College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 21MCQ
To determine
The correct option.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The two ends of the barbell shown are made of the same material. Which of the points shown is at the barbell’s center of gravity?
Many aspects of a gymnast's motion can be modeled
by representing the gymnast by four segments consisting of
arms, torso (including the head), thighs, and lower legs, as in
Figure P8.85. Figure P8.85b shows arrows of lengths reg locat-
ing the center of gravity of each segment. Use the data below
and the coordinate system shown in Figure P8.85b to locate
the center of gravity of the gymnast shown in Figure P8.85a.
Masses for the arms, thighs, and legs include both appendages.
Mass (kg)
"eg (m)
0.239
Segment
Length (m)
6.87
Arms
0.548
0.337
33.57
Torso
0.601
14.07
0.374
Thighs
0.151
0.227
7.54
Legs
0.350
Thigh
O Arm
Leg
60°
60°
Torso
Figure P8.85
The arm in Figure P8.17 weighs 41.5 N. The force of
gravity acting on the arm acts through point A. Determine the
magnitudes of the tension force F, in the deltoid muscle and
the force F, exerted by the shoulder on the humerus (upper-
arm bone) to hold the arm in the position shown.
F,
12°
F,
'0.080 m
-0.290 m
Figure P8.17
Chapter 7 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 7 - The batter in a baseball game hits a home run. As...Ch. 7 - Viewed from somewhere in space above the north...Ch. 7 - Figure Q7.3 shows four pulleys, each with a heavy...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - Prob. 7CQCh. 7 - A screwdriver with a very thick handle requires...Ch. 7 - If you have ever driven a truck, you likely found...Ch. 7 - A student gives a steady push to a ball at the end...
Ch. 7 - Prob. 11CQCh. 7 - If you grasp a hammer by its lightweight handle...Ch. 7 - Prob. 13CQCh. 7 - Prob. 15CQCh. 7 - The moment of inertia of a uniform rod about an...Ch. 7 - Prob. 17CQCh. 7 - With care, its possible to walk on top of a barrel...Ch. 7 - A nut needs to be tightened with a wrench. Which...Ch. 7 - Prob. 20MCQCh. 7 - Prob. 21MCQCh. 7 - Prob. 22MCQCh. 7 - Prob. 23MCQCh. 7 - A typical compact disk has a mass of 15 g and a...Ch. 7 - Two horizontal rods are each held up by vertical...Ch. 7 - Prob. 26MCQCh. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - What is the angular position in radians of the...Ch. 7 - A child on a merry-go-round takes 3.0 s to go...Ch. 7 - What is the angular speed of the tip of the minute...Ch. 7 - An old-fashioned vinyl record rotates on a...Ch. 7 - The earths radius is about 4000 miles. Kampala,...Ch. 7 - Prob. 6PCh. 7 - A turntable rotates counterclockwise at 78 rpm. A...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - The 1.00-cm-long second hand on a watch rotates...Ch. 7 - The earths radius is 6.37 106 m; it rotates once...Ch. 7 - To throw a discus, the thrower holds it with a...Ch. 7 - Prob. 14PCh. 7 - A computer hard disk starts from rest, then speeds...Ch. 7 - Prob. 16PCh. 7 - The crankshaft in a race car goes from rest to...Ch. 7 - Reconsider the situation in Example 7.10. If Luis...Ch. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - What is the net torque about the axle on the...Ch. 7 - The tune-up specifications of a car call for the...Ch. 7 - In Figure P7.22, force F2, acts half as far from...Ch. 7 - A professors office door is 0.91 m wide, 2.0 m...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 30PCh. 7 - The 2.0 kg, uniform, horizontal rod in Figure...Ch. 7 - A 4.00-m-long, 500 kg steel beam extends...Ch. 7 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 7 - The 2.0-m-long, 15 kg beam in Figure P7.34 is...Ch. 7 - Prob. 35PCh. 7 - Hold your arm outstretched so that it is...Ch. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - A regulation table tennis ball is a thin spherical...Ch. 7 - Prob. 40PCh. 7 - A solid cylinder with a radius of 4.0 cm has the...Ch. 7 - Prob. 42PCh. 7 - A bicycle rim has a diameter of 0.65 m and a...Ch. 7 - Prob. 44PCh. 7 - A small grinding wheel has a moment of inertia of...Ch. 7 - Prob. 46PCh. 7 - An objects moment of inertia is 2.0 kg m2. Its...Ch. 7 - Prob. 48PCh. 7 - A 200 g, 20-cm-diameter plastic disk is spun on an...Ch. 7 - Prob. 50PCh. 7 - A frictionless pulley, which can be modeled as a...Ch. 7 - Prob. 52PCh. 7 - If you lift the front wheel of a poorly maintained...Ch. 7 - Prob. 54PCh. 7 - A toy top with a spool of diameter 5.0 cm has a...Ch. 7 - Prob. 56PCh. 7 - A bicycle with 0.80-m-diameter tires is coasting...Ch. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61GPCh. 7 - The grap in Figure P7.56 shows the angular...Ch. 7 - A car with 58-cm-diameter tires accelerates...Ch. 7 - The cable lifting an elevator is wrapped around a...Ch. 7 - The 20-cm-diameter disk in Figure P7.59 can rotate...Ch. 7 - A combination lock has a 1.0-cm-diameter knob that...Ch. 7 - A 70 kg mans arm, including the hand, can be...Ch. 7 - Prob. 68GPCh. 7 - A reasonable estimate of the moment of inertia of...Ch. 7 - Prob. 70GPCh. 7 - The ropes in Figure P7.65 are each wrapped around...Ch. 7 - Flywheels are large, massive wheels used to store...Ch. 7 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 7 - Prob. 76GPCh. 7 - A tradesman sharpens a knife by pushing it with a...Ch. 7 - MCAT-Style Passage Problems The Bunchberry The...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - Prob. 81MSPPCh. 7 - Prob. 82MSPPCh. 7 - Prob. 83MSPPCh. 7 - Prob. 84MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three identical coins lie on three corners of a square 10.0 cm on a side, as shown. Determine the x- and y-coordinates of the center of gravity of the group of three coins.arrow_forwardFind the x - and y -coordinates of the center of gravity for the boomerang in Figure P8.12a. modeling the boomerang as in Figure P8.12b, where each uniform leg of the model has a length of 0.300 m and a mass of0.250 kg. (Note: Treat the legs like thin rods.)arrow_forwardA P8.11 SL: dir Find the x and y coordinates of the center of gravity of a 4.00 ft by 8.00 ft uniform sheet of plywood with the upper right quadrant removed as shown in the following figure. Hint: The mass of any segment of the plywood sheet is proportional to the area of that segment. y (ft) 4.00 2.00 x(ft) 0- 0 4.00 6.00 8.00 2.00arrow_forward
- The main muscles that hold your head upright attach to your spine in back of the point where your head pivots on your neck. Figure P8.66 shows typical numbers for the distance from the pivot to the muscle attachment point and the distance from the pivot to the center of gravity of the head. The muscles pull down to keep your head upright. If the muscle relaxes—if, for instance, you doze in one of your classes besides Physics—your head tips forward. In the questions that follow, assume that your head has a mass of 4.8 kg, and that you maintain the relative angle between your head and your spine. a. With the head held level, as shown, what muscle force is needed to keep a 4.8 kg head upright?b. If you tip your body forward so that your spine is level with the ground, what muscle force is needed to keep your head in the same orientation relative to the spine?c. If you tip your body backward, you will reach a point where no muscle force is needed to keep your head upright. For the…arrow_forwardA solid cylinder sits on top of a solid cube as shown in the figure. How far above the table's surface is the center of gravity of the combined object? 5.0 cm 400 g 5.0 cm 800 garrow_forwardIn exercise physiologystudies, it is sometimesimportant todetermine the location ofa person’s center of gravity.This can be done withthe arrangement shownin Figure P8.21. A lightplank rests on two scalesthat read Fg1 = 380. N andFg2 = 320. N. The scales are separated by a distance of 2.00 m.How far from the woman’s feet is her center of gravity?arrow_forward
- A 1.90-m-long barbell has a 21.0 kg weight on its left end and a 32.0 kg weight on its right end. If you ignore the weight of the bar itself, how far from the left end of the barbell is the center of gravity? Express your answer to three significant figures and include the appropriate units. Where is the center of gravity if the 9.00 kg mass of the barbell itself is taken into account? Express your answer to three significant figures and include the appropriate units.arrow_forwardTo get up on the roof, a person (mass 87.0 kg) places a 5.60 m aluminum ladder (mass 14.0 kg) against the house on a concrete pad with the base of the ladder 2.00 m from the house. The ladder rests against a plastic rain gutter, which we can assume to be frictionless. The center of mass of the ladder is 2 m from the bottom. The person is standing 3 m from the bottom. What are the magnitudes (in N) of the forces on the ladder at the top and bottom? top N bottom Narrow_forwardWhat is the student’s weight?arrow_forward
- The fishing pole in Figure P8.3 makes an angle of 20.0° with the horizontal. What is the magnitude of the torque exerted by the fish about an axis perpendicular to the page and pass- ing through the angler's hand if the fish pulls on the fishing line with a force F = 1.00 × 10² N at an angle 37.0° below the horizontal? The force is applied at a point 2.00 m from the angler's hands. 120.0° 87.0° -2.00 m- 120.0° 100 N Figure P8.3arrow_forwardq7arrow_forwardWhen you bend over, a series of large muscles, the erector spinae, pull on your spine to hold you up. Figure shows a simplified model of the spine as a rod of length L that pivots at its lower end. In this model, the center of gravity of the 320 N weight of the upper torso is at the center of the spine. The 160 N weight of the head and arms acts at the top of the spine. The erector spinae muscles are modeled as a single muscle that acts at an 12° angle to the spine. Suppose the person shown bends over to an angle of 30° from the horizontal. a. What is the tension in the erector muscle? Hint: Align your x-axis with the axis of the spine.b. A force from the pelvic girdle acts on the base of the spine. What is the component of this force in the direction of the spine? (This large force is the cause of many back injuries).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University