Concept explainers
Why do we expect the elements of life to be widely available on other worlds? How does the requirement of organic building blocks further constrain the prospects of habitability?
The reason to expect the elements of life to be widely available on other worlds and also requirement of organic building blocks and the way in which they constrain the prospects of habitability.
Answer to Problem 1RQ
Every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds and requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Explanation of Solution
The basic environmental requirement of life is the presence of atmosphere where humans can breathe, abundant surface water that is drinkable, combination of surface pressure and temperature and some set of chemical elements from which cells are formed.
The four basic chemical elements that make up
The reason to expect the presence of elements of life on other worlds is that all the other worlds are formed through the same process of accretion of gases and condensation sameas Earth.
All chemical elements except hydrogen and helium were produced by stars. Therefore they are present everywhere.
The most important element, such as, oxygen, nitrogen and carbon are also the third, sixth and fourth most abundant element in the universe while all the other heavy elements are quite rare compared to helium and hydrogen but they are also present in every star system.
Hence, every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds.
According to nebular theory of formation of solar system, the planets were formed by the process of condensation of gas in the solar nebula when solid particles condensed and these particles then accreted into planets, comets, moons and asteroids.
As long as condensation and accretion occur, there is always a possibility to find elements in other worlds.
The chemical elements are not the only thing which makes the life habitable other requirements such as water, atmosphere and, combination of surface pressure and temperature are the basic requirements which constraints the prospects ofhabitability.
One more important requirement is the presence of these elements in molecules that are used as building blocks of life; most of the organic molecules are created by some chemical reactions on the surface or somewhere deep in the oceans and some molecules are created by heat and pressure.
Chemical reactions would likely occur only on worlds with atmospheres or oceans. Therefore, requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Conclusion:
Thus, every start system has at least some amount of all elements used by life and the nature of formation of solar system is also the reason to expect elements of life in other worlds and requirement of basic organic building blocks constrain the prospects of habitability in other worlds.
Want to see more full solutions like this?
Chapter 7 Solutions
INSTANT ACCESS FOR LIFE IN THE UNIVERSE
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Essential Biology with Physiology (5th Edition)
Campbell Biology (11th Edition)
Human Anatomy & Physiology (2nd Edition)
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardIf A - B = 0, then the vectors A and B have equal magnitudes and are directed in the opposite directions from each other. True Falsearrow_forwardIf the eastward component of vector A is equal to the westward component of vector B and their northward components are equal. Which one of the following statements about these two vectors is correct? Vector À is parallel to vector B. Vectors À and point in opposite directions. VectorÀ is perpendicular to vector B. The magnitude of vector A is equal to the magnitude of vectorarrow_forward
- No chatgpt plsarrow_forwardConsider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby. A. First, if the rod was not there, what statement best describes the charge distribution of the ball? 1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball. B. Now, when the rod is moved close to the ball, what happens to the charges on the ball? 1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…arrow_forwardanswer question 5-9arrow_forward
- AMPS VOLTS OHMS 5) 50 A 110 V 6) .08 A 39 V 7) 0.5 A 60 8) 2.5 A 110 Varrow_forwardThe drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning