Electrical Circuits and Modified MasteringEngineering - With Access
Electrical Circuits and Modified MasteringEngineering - With Access
10th Edition
ISBN: 9780133992793
Author: NILSSON
Publisher: PEARSON
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 1P

a)

To determine

Find the current values io(0) and io().

a)

Expert Solution
Check Mark

Answer to Problem 1P

The current values io(0) and io() are 0.5 A and 0 A respectively.

Explanation of Solution

PSPICE Circuit:

Refer to Figure P7.1 in the textbook.

Draw the given circuit diagram in PSPICE as shown in Figure 1.

Electrical Circuits and Modified MasteringEngineering - With Access, Chapter 7, Problem 1P , additional homework tip  1

Simulation settings:

Provide the simulation settings as shown in Figure 2.

Electrical Circuits and Modified MasteringEngineering - With Access, Chapter 7, Problem 1P , additional homework tip  2

PSPICE output:

After run the PSPICE circuit a black output screen will be displayed. Right click on the mouse by keeping cursor on the output screen, click the option “Add Trace” and type the expression “I(L1)” in trace expression box.

The current plot io(t) is shown in Figure 3.

Electrical Circuits and Modified MasteringEngineering - With Access, Chapter 7, Problem 1P , additional homework tip  3

From PSPICE output, the initial and final value of output current is,

io(0)=500mA(or)0.5Aio()=0A

Conclusion:

Therefore, the current values io(0) and io() are 0.5 A and 0 A respectively.

b)

To determine

Find the expression io(t) for t0.

b)

Expert Solution
Check Mark

Answer to Problem 1P

The expression io(t) for t0 is 0.5e250tmA.

Explanation of Solution

Calculation:

Find the equivalent resistance after the switch is closed at t=0.

Req=12Ω+8Ω=20Ω

Find time constant from the circuit diagram.

τ=LReq

Here,

L is the inductance.

Req is the equivalent resistance across the load.

Substitute 20Ω for Req and 80 mH for L.

τ=80mH20Ω=80×10320ms=4ms

The expression io(t) is,

io(t)=io(0)etτ

Substitute 0A for io(), 0.5A for io(0), and 4ms for τ.

io(t)=0.5Aet4ms=0.5e250tA

Conclusion:

Therefore, the expression io(t) for t0 is 0.5e250tmA.

c)

To determine

Find the time taken to reach the output current of 100 mA after closed the switch.

c)

Expert Solution
Check Mark

Answer to Problem 1P

The time required to reach 100 mA of output current is 6.4 ms.

Explanation of Solution

Calculation:

The expression of output current io(t) for t0 is,

io(t)=0.5e250tA

Substitute 100 mA for io(t).

100mA=0.5e250tA0.1=0.5e250te250t=0.2t=6.4ms

Conclusion:

Therefore, the time required to reach 100 mA of output current is 6.4 ms.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q2)a) consider the Circuit in figure 2 with initial conditions of Vc (o) = 5V, I₁ (o) = 1A, (i) redraw the circuit in the frequency domain using laplace Wansforms. (ii) using this circuit derive an equation for the Voltage across the inductor in the time domain.. 3.12 ww =V/3F ZH (figure 2) d) Solve the following second order differential equation using laplace transforms. d12 + 5 dx 3x=71 dt - with initial conditions x² (0) = 2, α(0) = 1
b) Another periodic waveform is defined by T c) g(t)= T with g(t+mT) = g(t) and m is an integer. (i) Sketch g(t) over two full cycles in the time domain, labelling the axes. (ii) Derive the formulae for the complex Fourier coefficients c₁ for g(t). For a periodic waveform h(t), if its complex Fourier coefficients are T T when n is odd T 2n²² T 4nn when n is even and not zero 4nn please derive the first five non-zero terms of the real Fourier series for h(t).
Q3)α) f(t) = (-+- 1 Isto f(t+mT) = f(t). L+- I Ost ST integer (i) sketch f(t) 2 full cycles time domain. (labelling the axis). (ii) Derive the formula for the real fourier Coefficients (i) Real Fourier series f(t), first 5 non-terms. an bn for f(t).

Chapter 7 Solutions

Electrical Circuits and Modified MasteringEngineering - With Access

Ch. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - In the circuit shown in Fig. P 7.2, the switch...Ch. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - The two switches in the circuit seen in Fig. P...Ch. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - The switch shown in Fig. P 7.4 has been open for a...Ch. 7 - Prob. 10PCh. 7 - In the circuit in Fig. P 7.11, let Ig represent...Ch. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - For the circuit seen in Fig. P 7.19, find the...Ch. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - In the circuit shown in Fig. P 7.26, both switches...Ch. 7 - The switch in the circuit in Fig. P 7.25 is closed...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - The switch in the circuit seen in Fig. P 7.30 has...Ch. 7 - In Problem 7.30 how many microjoules of energy are...Ch. 7 - Prob. 33PCh. 7 - Prob. 35PCh. 7 - The switch in the circuit shown in Fig. P 7.38 has...Ch. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - For the circuit in Fig. P 7.4, find (in...Ch. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - The switch in the circuit of Fig. P 7.55 has been...Ch. 7 - Prob. 54PCh. 7 - The switch in the circuit seen in Fig. P 7.56 has...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - For the circuit in Fig. P 7.73, how many...Ch. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - Prob. 79PCh. 7 - Prob. 80PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 87PCh. 7 - Prob. 88PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - Prob. 95PCh. 7 - Prob. 102PCh. 7 - Prob. 103PCh. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Root-loci 1 - What is a root-loci?; Author: John Rossiter;https://www.youtube.com/watch?v=Neb5IsZ_nHU;License: Standard Youtube License