
Concept explainers
Campomelic dysplasia (CMD1) is a congenital human syndrome featuring malformation of bone and cartilage. It is caused by an autosomal dominant mutation of a gene located on chromosome 17. Consider the following observations in sequence, and in each case, draw whatever appropriate conclusions are warranted.
- (a) Of those with the syndrome who are karyotypically 46, XY, approximately 75 percent are sex reversed, exhibiting a wide range of female characteristics.
- (b) The nonmutant form of the gene, called SOX9, is expressed in the developing gonad of the XY male, but not the XX female.
- (c) The SOX9 gene shares 71 percent amino acid coding sequence homology with the Y-linked SRY gene.
- (d) CMD1 patients who exhibit a 46, XX karyotype develop as females, with no gonadal abnormalities.
HINT: This problem asks you to apply the information presented in this chapter to a real-life example. The key to its solution is knowing that some genes are activated and produce their normal product as a result of expression of products of other genes found on different chromosomes.
(a)

To determine: The explanation for the sex reversal in Campomelic dysplasia (CMD1).
Introduction: The mutation is the change in the nucleotide sequence of the gene, which result in either the formation of a defective protein or no protein at all. The mutation can also alter the regulation of certain genes leading to their hyperactivity or hypoactivity.
Explanation of Solution
The individuals with Campomelic dysplasia contain an autosomal dominant mutation in chromosome number 17. The disease causes the malformation of bone and cartilage. The karyotype of the patients with this disorder is 46 chromosomes with X and Y sex chromosomes. The individual thus cannot show typical sexual differentiation. This is because gene CMD1 plays an important role in controlling sexual differentiation. The mutation in the gene can interfere with the transcription, translation, or the receptor functioning of genes responsible for male sex differentiation. Therefore, the individual can exhibit some female characteristics.
(b)

To determine: The reason for the expression of the non-mutant form of SOX9 in gonads of male and not females
Introduction: Genetic abnormality can take place when there is any alteration in the gene expression or the nucleotide composition. The typical effect of genetic change is the decrease in the fertility of the affected individual.
Explanation of Solution
The non-mutant gene SOX9 is present in an individual without Campomelic dysplasia. This finding indicates that the gene SOX9 is responsible for the development of the gonads in males. This gene is not found in the females having XX chromosomes, and so the gene does not play any significant role in the sex differentiation in females.
(c)

To determine: The reason for 71% homology between SOX9 gene and Y-linked SRY gene.
Introduction: Homology is the degree of similarity between the genes, proteins, or other biomolecules. The homology can be attributed to the similar ancestry or the same point of origin of the molecules or structures.
Explanation of Solution
The SOX9 gene shares high similarity or homology (71%) with the SRY gene. The high degree of similarity can account for the similar functions shared between the genes. As the Y-linked SRY gene plays a role in male sex differentiation, the similarity in the genes can explain the function of SOX9 gene in the development of undifferentiated gonadal tissue into testes.
Thus, the high degree of similarity between the Y-linked SRY gene and SOX9 gene indicates the similarity in the function and role in male sex differentiation.
(d)

To determine: The reason for the CMD1 female patients exhibiting 46, XX karyotype with no gonadal abnormalities.
Introduction: Karyotype is the representation of the genetic composition in an individual. It is expressed as the total number of chromosomes followed by the composition of sex chromosomes and genetic abnormality if it is present.
Explanation of Solution
The individual with Campomelic dysplasia with the karyotype 46, XX will develop into a female and will not exhibit any gonadal abnormalities. This is because the SOX9 gene that gets mutated and hampers the sexual differentiation is only in males and not in females. The SOX9 gene does not play any role in the female sex differentiation. Therefore, the alterations in this gene will not cause any gonadal abnormalities in females due to the absence of its function in female gonad development.
Thus, the female with CMD1 will not have any gonadal abnormalities as the SOX9 gene that gets mutated does not play a role in sexual differentiation in females.
Want to see more full solutions like this?
Chapter 7 Solutions
EBK CONCEPTS OF GENETICS
- What is this?arrow_forwardMolecular Biology A-C components of the question are corresponding to attached image labeled 1. D component of the question is corresponding to attached image labeled 2. For a eukaryotic mRNA, the sequences is as follows where AUGrepresents the start codon, the yellow is the Kozak sequence and (XXX) just represents any codonfor an amino acid (no stop codons here). G-cap and polyA tail are not shown A. How long is the peptide produced?B. What is the function (a sentence) of the UAA highlighted in blue?C. If the sequence highlighted in blue were changed from UAA to UAG, how would that affecttranslation? D. (1) The sequence highlighted in yellow above is moved to a new position indicated below. Howwould that affect translation? (2) How long would be the protein produced from this new mRNA? Thank youarrow_forwardMolecular Biology Question Explain why the cell doesn’t need 61 tRNAs (one for each codon). Please help. Thank youarrow_forward
- Molecular Biology You discover a disease causing mutation (indicated by the arrow) that alters splicing of its mRNA. This mutation (a base substitution in the splicing sequence) eliminates a 3’ splice site resulting in the inclusion of the second intron (I2) in the final mRNA. We are going to pretend that this intron is short having only 15 nucleotides (most introns are much longer so this is just to make things simple) with the following sequence shown below in bold. The ( ) indicate the reading frames in the exons; the included intron 2 sequences are in bold. A. Would you expected this change to be harmful? ExplainB. If you were to do gene therapy to fix this problem, briefly explain what type of gene therapy youwould use to correct this. Please help. Thank youarrow_forwardMolecular Biology Question Please help. Thank you Explain what is meant by the term “defective virus.” Explain how a defective virus is able to replicate.arrow_forwardMolecular Biology Explain why changing the codon GGG to GGA should not be harmful. Please help . Thank youarrow_forward
- Stage Percent Time in Hours Interphase .60 14.4 Prophase .20 4.8 Metaphase .10 2.4 Anaphase .06 1.44 Telophase .03 .72 Cytukinesis .01 .24 Can you summarize the results in the chart and explain which phases are faster and why the slower ones are slow?arrow_forwardCan you circle a cell in the different stages of mitosis? 1.prophase 2.metaphase 3.anaphase 4.telophase 5.cytokinesisarrow_forwardWhich microbe does not live part of its lifecycle outside humans? A. Toxoplasma gondii B. Cytomegalovirus C. Francisella tularensis D. Plasmodium falciparum explain your answer thoroughly.arrow_forward
- Select all of the following that the ablation (knockout) or ectopoic expression (gain of function) of Hox can contribute to. Another set of wings in the fruit fly, duplication of fingernails, ectopic ears in mice, excess feathers in duck/quail chimeras, and homeosis of segment 2 to jaw in Hox2a mutantsarrow_forwardSelect all of the following that changes in the MC1R gene can lead to: Changes in spots/stripes in lizards, changes in coat coloration in mice, ectopic ear formation in Siberian hamsters, and red hair in humansarrow_forwardPleiotropic genes are genes that (blank) Cause a swapping of organs/structures, are the result of duplicated sets of chromosomes, never produce protein products, and have more than one purpose/functionarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College





