MAT.SCIENCE+ENGIN.(PERUSALL ACCESS)
10th Edition
ISBN: 2818440149658
Author: Callister
Publisher: PERUSALL
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 1DP
To determine
The cold work is possible or not when the Brinell hardness is given.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Determine the heel and toe stresses and the factor of safeties for sliding and
overturning for the gravity dam section shown in the figure below for the following
loading conditions:
-
Horizontal earthquake (Kh) = 0.1
- Normal uplift pressure with gallery drain working
- Silt deposit up to 30 m height
- No wave pressure and no ice pressure
-Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³
- Submerged weight of silt = 0.9 Ton/m³
- Coefficient of friction = 0.65 and angle of repose = 25°
Solve this question with the presence of gallery and without gallery., discuss
the issue in both cases....
144 m
E
4m
W
8m
6m
8m7m
120m
The feed flow rate to an adiabatic continuous stirred tank reactor (CSTR) in which an exothermicreaction is occurring is increased from 1000 to 1400. kg/h, causing the outlet temperature to change as shown:a) Briefly explain on a physical basis why the temperature in this system oscillates after a step increasein the inlet flow rate. Be clear, complete, and concise. c) You know that this oscillating response cannot be that of two first order processes with real timeconstant acting in series. Assuming the reaction is first order and the CSTR operates with constant holdup,derive the block diagram with all transfer functions indicating how the temperature would respond to the feedflow rate step change (W’(s) as input and T’(s) as output). An intermediate variable in this block diagram willbe the concentration of A in the reactor, represented by CA’(s). d) A correct result for part c) will include a feedback loop in the block diagram, indicating the responsein T to a change in w is not…
Not use ai please
Chapter 7 Solutions
MAT.SCIENCE+ENGIN.(PERUSALL ACCESS)
Ch. 7 - Prob. 1QAPCh. 7 - Prob. 2QAPCh. 7 - Prob. 3QAPCh. 7 - Prob. 4QAPCh. 7 - Prob. 5QAPCh. 7 - Prob. 7QAPCh. 7 - Prob. 8QAPCh. 7 - Prob. 9QAPCh. 7 - Prob. 10QAPCh. 7 - Prob. 11QAP
Ch. 7 - Prob. 12QAPCh. 7 - Prob. 13QAPCh. 7 - Prob. 19QAPCh. 7 - Prob. 20QAPCh. 7 - Prob. 21QAPCh. 7 - Prob. 22QAPCh. 7 - Prob. 23QAPCh. 7 - Prob. 25QAPCh. 7 - Prob. 26QAPCh. 7 - Prob. 33QAPCh. 7 - Prob. 34QAPCh. 7 - Prob. 35QAPCh. 7 - Prob. 36QAPCh. 7 - Prob. 42QAPCh. 7 - Prob. 1DPCh. 7 - Prob. 3DPCh. 7 - Prob. 4DPCh. 7 - Prob. 7DPCh. 7 - Prob. 1FEQPCh. 7 - Prob. 2FEQPCh. 7 - Prob. 3FEQP
Knowledge Booster
Similar questions
- After playing our giving implementation, your task is to implement Dinning Philosophers with semaphore in C, by including and Your implementation will require creating five philosophers, each identified by a number 0.4. Each philosopher will run as a separate thread. Create threads using Pthreads as discussed in the Lecture slides on Chapter 4 and Practice Lab on Threads. Your solution needs to accomplish the following: Implement in C (15 points) 1. dp1.c - You are to provide your solution to this assignment as a single C program named 'dp1.c using semaphore. Explain in you code (as comments) that the dead lock will happen or not. If there is a possible deadlock, you can simply solve the deadlock by pick the fork in order like the first solution in our slides. Solve Deadlock by Footman (15 points) 1. Here is a new solution to overcome the deadlock. The Dining Philosophers decide to hire a footman whose task to allow only four philosophers to sit on the table. When entering and…arrow_forwardHelp on this equation system?arrow_forwardOn page 1, in the first body paragraph ("In the United States…to be smart."), edit the Kaya source so the Name of Web Page is "Fast Facts 2020: Demographics", the correct Name of the webpage.arrow_forward
- Transmitting and receiving antennas operating at 1 GHz with gains of 20 and 15 dB, respectively, are separated by a distance of 1 km. Find the power delivered to the load when the input power is 150 W. Assume the PLF = 1.arrow_forwardSpur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearingarrow_forwardProblem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forward
- An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forward
- Problem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forwardI need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY

MATLAB: An Introduction with Applications
Engineering
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Essentials Of Materials Science And Engineering
Engineering
ISBN:9781337385497
Author:WRIGHT, Wendelin J.
Publisher:Cengage,

Industrial Motor Control
Engineering
ISBN:9781133691808
Author:Stephen Herman
Publisher:Cengage Learning

Basics Of Engineering Economy
Engineering
ISBN:9780073376356
Author:Leland Blank, Anthony Tarquin
Publisher:MCGRAW-HILL HIGHER EDUCATION

Structural Steel Design (6th Edition)
Engineering
ISBN:9780134589657
Author:Jack C. McCormac, Stephen F. Csernak
Publisher:PEARSON

Fundamentals of Materials Science and Engineering...
Engineering
ISBN:9781119175483
Author:William D. Callister Jr., David G. Rethwisch
Publisher:WILEY