
To match the integrals (a)-(e) with their anti-derivatives (i)-(v) on the basis of the general form (do no evaluate the integrals).

Answer to Problem 1CRE
Solution:
We have hence determined that (a) matches (v), (b) matches (iv), (c) matches (iii), (d) matches (i) and (e) matches (ii)
Explanation of Solution
Compare the integrals and the functions without evaluating the integrals to identify the correct match
Given:
(a) (b) (c) (d)
(e)
(i) (ii)
(iii)
(iv) (v)
Calculation:
(a) - since is a constant multiple of the derivative , the substitution method implies that the integral is a constant multiple of that is a constant multiple of . This hence matches the function in (v)
(b) - corresponds to and hence matches (iv)
(c) - the reduction formula shows that this integral is the sum of constant multiples of products and hence matches the function in (iii)
(d) - since which corresponds to the function in (i)
(e) - This one matches the function in (ii)
Conclusion:
We have hence determined that (a) matches (v), (b) matches (iv), (c) matches (iii), (d) matches (i) and (e) matches (ii).
Want to see more full solutions like this?
Chapter 7 Solutions
Calculus: Early Transcendentals
- 3. True False. If false create functions that prove it is false. Note: f(x) = g(x). a) If_lim ƒ(x) = ∞ and_lim g(x) = ∞,then_lim [ƒ(x) − g(x)] = 0 x→ 0+ x→0+ x→0+ b) If h(x) and g(x) are continuous at x = c, and if h(c) > 0 and g(c) = 0, then h(x) lim. will = x→c g(x) c) If lim f(x) = 0 and lim g(x) = 0 then lim f(x) does not exist. x-a x-a x→a g(x)arrow_forwardPls help ASAParrow_forward15. a) Consider f(x) = x-1 3x+2 and use the difference quotient to determine the simplified expression in terms of x, for the slope of any tangent to y = f(x). Also, determine the slope at x = 2. 15 b) Determine the equation of the tangent to f(x) at x = 2. Final answer in Standard Form Ax + By + C = 0, A ≥ 0, with no fractions or decimals.arrow_forward
- + Find the first five non-zero terms of the Taylor series for f(x) = sin(2x) centered at 4π. + + + ...arrow_forward+ + ... Find the first five non-zero terms of the Taylor series for f(x) centered at x = 4. = 1 x + + +arrow_forwardFind the interval and radius of convergence for the given power series. n=0 (− 1)" xn 7" (n² + 2) The series is convergent on the interval: The radius of convergence is R =arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





