UNIVERSE (LOOSELEAF):STARS+GALAXIES
6th Edition
ISBN: 9781319115043
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 15Q
To determine
(a)
The escape speed from the surface of the Sun.
To determine
(b)
The reason for the Sun to have lost very little hydrogen over its entire history.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
K
What is the wavelength (in nm) of the most intense radiation emitted from the surface of Mercury at high noon? (Hint: Use Wien's law, Amax
= 2.90 x 10° m: K
%3D
T (in K)
nm
In which band of the electromagnetic spectrum is that wavelength? (Hint: Examine the following figure.)
Visible light
Short wavelengths
Long wavelengths
4 x 107 5x 107 6x 107 7x 10meters
(400 nm) (500 nm) (600 nm) /(700 nm)
Wavelength (meters)
10 12
10 10
10
104
102
1
102
104
Gamma-
ray
Ultra-
violet
Micro-
Radio
X-ray
Infrared
wave
UHF VHF FM
AM
a
Opaque
Visual
window
Radio
window
Transparent
Short
Wavelength
Long
b
O gamma-ray
O X-ray
O ultraviolet
O visual
O infrared
O microwave
O radio
оооо о оо
Opacity of
Earth's atmosphere
Jupiter radiates more energy than it
receives from the Sun by 8.7 x10-10 LO.
Jupiter's radius
is 7.1 x109 cm and its mass is 1.9 x1030 g.
Compute its dynamical and thermal
timescales.
(b) Can we assume that Jupiter is in
hydrostatic equilibrium?
(c) Could gravitational contraction have
powered Jupiter's luminosity for its entire
4.5 Gyr lifetime?
(d) Use conservation of energy to estimate
the rate at which Jupiter's radius is
shrinking to power
this radiation. You may ignore the factor of
order unity that arises from Jupiter's
unknown density
distribution.
B2
Chapter 7 Solutions
UNIVERSE (LOOSELEAF):STARS+GALAXIES
Ch. 7 - Prob. 1QCh. 7 - Prob. 2QCh. 7 - Prob. 3QCh. 7 - Prob. 4QCh. 7 - Prob. 5QCh. 7 - Prob. 6QCh. 7 - Prob. 7QCh. 7 - Prob. 8QCh. 7 - Prob. 9QCh. 7 - Prob. 10Q
Ch. 7 - Prob. 11QCh. 7 - Prob. 12QCh. 7 - Prob. 13QCh. 7 - Prob. 14QCh. 7 - Prob. 15QCh. 7 - Prob. 16QCh. 7 - Prob. 17QCh. 7 - Prob. 18QCh. 7 - Prob. 19QCh. 7 - Prob. 20QCh. 7 - Prob. 21QCh. 7 - Prob. 22QCh. 7 - Prob. 23QCh. 7 - Prob. 24QCh. 7 - Prob. 25QCh. 7 - Prob. 26QCh. 7 - Prob. 27QCh. 7 - Prob. 28QCh. 7 - Prob. 29QCh. 7 - Prob. 30QCh. 7 - Prob. 31QCh. 7 - Prob. 32QCh. 7 - Prob. 33QCh. 7 - Prob. 34QCh. 7 - Prob. 35QCh. 7 - Prob. 36QCh. 7 - Prob. 37QCh. 7 - Prob. 38QCh. 7 - Prob. 39QCh. 7 - Prob. 40QCh. 7 - Prob. 41Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forwardSaturn emits radiation at a rate of 1.98 x 1017 W and absorbs sunlight at a rate of 1.11 x 1017 W. a) Assuming that the radiation excess comes exclusively from Saturn's gravitational potential energy, at what rate dR/dt is Saturn shrinking? b) How long would it take for Saturn's radius to decrease by 1%?arrow_forwardIf the red glow around Antares is indeed produced by reflection of the light from Antares by dust, what does its red appearance tell you about the likely temperature of Antares? Look up the spectral type of Antares in Appendix J. Was your estimate of the temperature about right? In most of the images in this chapter, a red glow is associated with ionized hydrogen. Would you expect to find an H II region around Antares? Explain your answer.arrow_forward
- What is the escape velocity from the Sun? How much greater is it than the escape velocity from Earth?arrow_forwardWhat produced the helium now present in the Sun’s atmosphere? In Jupiter’s atmosphere? In the Sun’s core?arrow_forward1) How massive would Earth had been if it had accreted hydrogen compounds in addition to the sme properties listed in table 7.1? (Assume the same properties of the ingredients as listed in the table) 2) Now imagine that Earth had been able to capture hydrogen and helium gas in the same proportions as listed in the table. How massive would it have been?arrow_forward
- c) Derive the Schwarzschild criterion for the onset of convection in an ideal gas, namely d ln T d ln P 7-1 Y Explain all steps in your derivation, and justify any assumptions that you make. d) In a region of convective instability near the surface of a solar-type star of total mass M, the temperature and pressure are related approximately by the expression P KT5/2. Show that the temperature gradient for an ideal gas in hydrostatic = equilibrium in this convection zone is given by dT dr 2Gm(r)μ 5Rr² Further, assuming that the mass in the convection zone is small compared to M, show that at a depth h measured from the top of the convection zone, the temperature is approximately given by T = Ts + 2GMμ -h₂ 5RR² when his small compared to R, and Ts is the temperature at the top of the convection zone.arrow_forward10arrow_forwardProblem 2. Thermal Energy of the Gas Giants: Energy Radiated by Saturn (Palen, et. al., 1st Edition, Chapter 8, problems 40, 62) The equilibrium temperature (Links to an external site.) for Saturn should be 82 K but instead we find an average temperature of 95 K. How much more energy is Saturn radiating into space than it absorbs from the sun? Does this violate the law of conservation of energy? What is the source of this additional energy?arrow_forward
- I don't get how to answer this, I have included an image of the question.arrow_forward1. The mass of the Sun is about 2x10³0 kg. The Sun was about 72% hydrogen when it first formed. About 11% of the total amount of the Sun's hydrogen is available for fusion within the Sun's core. [3 points] (a) What is the total mass of hydrogen available for fusion, in kg? (b) The Sun fuses about 600 billion kg of hydrogen each second. Calculate how long the Sun's initial supply of hydrogen can last. Give your answer in both seconds and years. Hint: use the result you calculated in part (a). (c) We know that our Solar System is about 4.5 billion years old. Using your calculation above, how much longer do we have until the Sun runs out of hydrogen?arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) A missile is launched upward with a speed that is half the escape speed. What height (in radii of Earth) will it reach? R/4 R/3 R/2 R 2R A) The weight of a 0.60 kg object at the surface of Planet V is 20 N. The radius of the planet is 4 x 10 6 m. Find the gravitational acceleration at a distance of 2 x 10 6 m from the surface of this planet. 8.9 m/s2 11 m/s2 13 m/s2 18 m/s2 B) Two masses are precisely 1 m apart from each other. The gravitational force each exerts on the other is exactly 1 N. If the masses are identical, what is each mass? 1.22 x 105 kg 1.34 x 1010 kg 2.50 x 105 kg 1.58 x 1010 kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY