Engineering Fundamentals
Engineering Fundamentals
6th Edition
ISBN: 9780357112144
Author: Saeed Moaveni
Publisher: MISC PUBS
Question
Book Icon
Chapter 7, Problem 15P
To determine

Calculate the average pressure at the bottom of the women’s high-heeled dress shoe and a women’s athletic walking shoe.

Expert Solution & Answer
Check Mark

Answer to Problem 15P

The average pressure at the bottom of the women’s high-heeled dress shoe is 2.17psi_.

The average pressure at the bottom of the women’s athletic walking shoe is 1.67psi_.

Explanation of Solution

Given information:

Weight of the women is W=120lb

Calculation:

The weight of the women is carried by both shoes. Hence, the weight (Force) acting on each shoe is as follows:

F=W2=1202=60lb

Sketch the profile of high-heeled dress shoe in inches as shown in Figure 1.

Engineering Fundamentals, Chapter 7, Problem 15P , additional homework tip  1

Refer to Figure 1.

The profile of contact area is divided into two equal parts and each part is divided into 8 trapezoids of equal heights.

Consider the area of top portion as A1 and the bottom portion as A2.

Apply trapezoidal rule as shown below.

A=h[12y0+y1+y2++yn2+yn1+12yn] (1)

Calculate the area of top portion (A1) using Equation (1) as shown below.

A1=1×[12(0)+1.12+1.37+1.25+1.75+2.12+2.12+2+1.87+12(0)]=13.6in.2

Calculate the area of bottom portion (A2) using Equation (1) as shown below.

A2=1×[12(0)+1.5+1.62+1.75+2.12+2.12+2+1.62+1.25+12(0)]=13.9814in.2

Calculate the total area of high-heeled dress shoe as shown below.

A=A1+A2

Substitute 13.6in.2 for A1 and 14in.2 for A2.

A=13.6+14=27.6in.2

Calculate the average pressure at the bottom of high-heeled dress shoe as shown below.

Pressure=Force(F)Area(A) (2)

Substitute 60lb for F and 27.6in.2 for A in Equation (2).

Pressure=6027.6=2.17psi

Hence, the average pressure at the bottom of the women’s high-heeled dress shoe is 2.17psi_.

Sketch the profile of athletic walking shoe in inches as shown in Figure 2.

Engineering Fundamentals, Chapter 7, Problem 15P , additional homework tip  2

Refer to Figure 2.

The profile of contact area is divided into two equal parts and each part is divided into 12 trapezoids of equal heights.

Consider the area of top portion as A1 and the bottom portion as A2.

Calculate the area of top portion (A1) using Equation (1) as shown below.

A1=1×[12(0)+1.12+1.37+1.25+1+0.87+1.12+1.75+2.12+2.12+2+1.87+12(0)]=16.5616.6in.2

Calculate the area of bottom portion (A2) using Equation (1) as shown below.

A2=1×[12(0)+1.5+1.62+1.75+1.62+1.75+2+2.12+2.12+2+1.62+1.25+12(0)]=19.3519.4in.2

Calculate the total area of athletic walking shoe as shown below.

A=A1+A2

Substitute 16.6in.2 for A1 and 19.4in.2 for A2.

A=16.6+19.4=36in.2

Calculate the average pressure at the bottom of athletic walking shoe as shown below.

Substitute 60lb for F and 36in.2 for A in Equation (2).

Pressure=6036=1.67psi

Therefore, the average pressure at the bottom of the women’s athletic walking shoe is 1.67psi_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. Using the Green-Ampt Model, compute the infiltration rate, f, and cumulative infiltration, F, after one hour of infiltration into a sandy clay loam soil. Assume initial moisture conditions are midway between the field capacity and wilting point and that water is ponded to a small but negligible depth on the surface.
Assignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 m
A1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,