(a)
The kinetic energy of an asteroid having radius
(a)

Answer to Problem 12Q
Solution:
The kinetic energy of the asteroid is found out to be
Explanation of Solution
Given data:
The velocity of the asteroid hitting the Earth is
The radius of the asteroid is
The density of the asteroid is
Formula used:
The mass of the asteroid can be calculated by the following expression:
Here,
The expression for the volume of a sphere is:
Here,
Conversion formula from kilometer to meter is:
1 km = 1000 m
The kinetic energy is calculated by the below expression:
Here,
Explanation:
Recall the expression for calculating the volume.
Substitute 1 km for
Recall the expression of mass.
Substitute
The mass of asteroid is
Recall the expression for the kinetic energy.
Substitute
Conclusion:
Thus, the kinetic energy of the asteroid is found out to be
(b)
The comparison between the energy released by the impact of asteroid mentioned in sub-part (a) to the energy released by a 20-kiloton nuclear weapon, which was similar to the nuclear weapon dropped on Hiroshima.
(b)

Answer to Problem 12Q
Solution:
The energy released during nuclear destruction is 40 times smaller than the energy released during the asteroid strike.
Explanation of Solution
Given data:
The energy released by the nuclear weapon is 20-kilotons.
Formula used:
1 kiloton of TNT emits
The expression of energy released in joules is:
Explanation:
From sub-part (a), the value of kinetic energy of the asteroid is
Recall the expression of energy released in joules.
Substitute
Refer to the value of energy released by the impact of an asteroid that is
The energy released in nuclear attack is
Taking the ratio of both the above energies,
Conclusion:
Therefore, the kinetic energy of the asteroid striking the Earth’s surface is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- Min Min is hanging from her spring-arms off the edge of the level. Due to the spring like nature of her arms she is bouncing up and down in simple harmonic motion with a maximum displacement from equilibrium of 0.118 m. The spring constant of Min-Min’s arms is 9560. N/m and she has a mass of 87.5 kg. What is the period at which she oscillates? Find her maximum speed. Find her speed when she is located 5.00 cm from her equilibrium position.arrow_forward(a) What magnification in multiples is produced by a 0.150 cm focal length microscope objective that is 0.160 cm from the object being viewed? 15.9 (b) What is the overall magnification in multiples if an eyepiece that produces a magnification of 7.90x is used? 126 × ×arrow_forwardGravitational Potential Energyarrow_forward
- E = кедо Xo A continuous line of charge lies along the x axis, extending from x = +x to positive infinity. The line carries positive charge with a uniform linear charge density 10. (a) What is the magnitude of the electric field at the origin? (Use the following as necessary: 10, Xo, and ke.) (b) What is the direction of the electric field at the origin? O O O O O O G -y +z ○ -z +x -x +yarrow_forwardInclude free body diagramarrow_forward2 Spring 2025 -03 PITT Calculate the acceleration of a skier heading down a 10.0° slope, assuming the coefficient of cold coast at a constant velocity. You can neglect air resistance in both parts. friction for waxed wood on wet snow fly 0.1 (b) Find the angle of the slope down which this skier Given: 9 = ? 8=10° 4=0.1arrow_forward
- dry 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a c piston into a steel cylinder. What is the normal force between the piston and cyli=030 What force would she have to exert if the steel parts were oiled? k F = 306N 2 =0.03 (arrow_forwardInclude free body diagramarrow_forwardInclude free body diagramarrow_forward
- Test 2 МК 02 5. (a) When rebuilding her car's engine, a physics major must exert 300 N of force to insert a dry = 0.03 (15 pts) piston into a steel cylinder. What is the normal force between the piston and cylinder? What force would she have to exert if the steel parts were oiled? Mk Giren F = 306N MK-0.3 UK = 0.03 NF = ?arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 ke? a = 350 m/s 2arrow_forward2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg? (10 pts) a = 3.50 m/s 2 distance 90 km/h = 3.50m/62 M = 245garrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning





