(a)
The spaceship having greater kinetic energy and that having greater momentum if both the engines are fired for same time.
(a)
Answer to Problem 108P
The Vulcan spaceship will have greater kinetic energy and both the ships will have same momentum if both the engines are fired for same time.
Explanation of Solution
Given that the mass of Vulcan spaceship is
Write the expression for the distance travelled by the spaceship.
Here,
Modify the equation (I) using Newton’s second law.
Here,
Write the expression for the work done on the spaceship by the engine.
Here,
According to work energy theorem, the work done is equal to change in kinetic energy
Use equation (II) in (III).
Write the expression for the change in momentum of the spaceships.
Here,
Conclusion:
Equation (V) indicate that, the change in kinetic energy of the spaceships is inversely proportional to its mass. Since both the spaceships are starting from rest, the spaceship with lesser mass will have greater change in kinetic energy and hence the Vulcan ship will have greater kinetic energy.
Since both the spaceships are provided with same force and same duration of engine firing, according to equation (VI) both the ships will have same change in momentum, and hence both the sips will have same momentum.
Therefore, the Vulcan spaceship will have greater kinetic energy and both the ships will have same momentum if both the engines are fired for same time.
(b)
The spaceship having greater kinetic energy and that having greater momentum if both the engines are fired for same distance.
(b)
Answer to Problem 108P
Both the ships will have same momentum, and the Romulan spaceship will have greater kinetic energy if both the engines are fired for same distance.
Explanation of Solution
Given that the mass of Vulcan spaceship is
Equation (IV) gives the change in kinetic energy of the spaceships.
Equation (VI) indicates that the change in momentum of the spaceships is directly proportional to the time for which the engine is fired.
Conclusion:
The force and the distance for which the engine fired are same for both the spaceships, This results the change in kinetic energy of the spaceships to be the same according to equation (IV). Since both ships are starting from rest, both will have same kinetic energy.
The more massive ship needs to fire its engine for long time to cover a particular distance. Thus, according to equation (VI), the change in momentum will be greater for the Romulan ship. Hence, Romulan ship will have greater momentum.
Therefore, both the ships will have same momentum, and the Romulan spaceship will have greater kinetic energy if both the engines are fired for same distance.
(c)
The kinetic energy and momentum of the spaceships when they are fired for same time and when they are fired for same distance.
(c)
Answer to Problem 108P
When the ships are fired for same time, the kinetic energy of Vulcan ship is
Explanation of Solution
Given that in part (a), the mass of Vulcan spaceship is
Equation (V) gives the kinetic energy of the spaceships.
Equation (VI) gives the momentum of both the ships.
Given that in part (b), the engines are fired for
Equation (IV) gives the kinetic energy of both the spaceships when the engines are fired for same distance.
Write the expression for the momentum of the spaceship in terms of its kinetic energy.
Conclusion:
Consider the condition in part (a), the engines are fired for same time.
Substitute
Substitute
Substitute
Consider the condition in part (b), the engines are fired for same distance.
Substitute
Substitute
Substitute
Therefore, when the ships are fired for same time, the kinetic energy of Vulcan ship is
Want to see more full solutions like this?
Chapter 7 Solutions
Physics
- a) What is the lenght of x? b) Findθ c) Find ϕarrow_forwardA surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks x = 97.7 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is θ = 33.0 °. How wide is the river?arrow_forwardA small turtle moves at a speed of 697. furlong/fortnight. Find the speed of the turtle in centimeters per second. Note that 1.00 furlong = 220. yards, 1.00 yard = 3.00 feet, 1.00 foot = 12.0 inches, 1.00 inch = 2.54 cm, and 1.00 fortnight = 14.0 days.arrow_forward
- The landmass of Sokovia lifted in the air in Avengers: Age of Ultron had a volume of about 1.98 km3. What volume is that in m3?arrow_forwardA fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is exactly 6.00 ft in length. Take the distance from Earth to the Moon to be 252,000 miles, and use the given approximation to find the distance in fathoms. 1 mile = 5280 ft. (Answer in sig fig.)arrow_forwardNo chatgpt pls will upvotearrow_forward
- One of the earliest video games to have a plot, Zork, measured distances in “Bloits” where 1 Bloit was defined as the distance the king’s favorite pet could run in one hour, 1,090 m. In the same game the king has a statue made that is 9.00 Bloits high. What is this in meters?arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Defination of voltagearrow_forwardAt point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?arrow_forwardMake a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON