Fundamentals of Differential Equations and Boundary Value Problems
Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6.RP, Problem 1RP

Determine the intervals for which Theorem 1 on page 319 guarantees the existence of a solution in that interval .

a. y ( 4 ) ( ln x ) y + x y + 2 y = cos 3 x

b. ( x 2 1 ) y + ( sin x ) y + x + 4 y + e x y = x 2 + 3

Expert Solution
Check Mark
To determine

(a)

The intervals for which Theorem 1 guarantees the existence of solution in that interval

Answer to Problem 1RP

Solution:

(0,) is the interval in which the theorem guarantees unique solution of given problem.

Explanation of Solution

Given:

The given differential equation is y(4)(lnx)y+xy+2y=cos3x

Approach:

Theorem 1 state that:

Suppose p(x)1, …, p(x)n and g(x) are each continuous on an interval (a,b) that contains the point x Then, for any choice of the initial values γ0, γ1, …γn1, there exists a unique solution y(x) on the whole interval (a,b) to the initial value problem

y(n)(x)+p1(x)y(n1)(x)++pn(x)y(x)=g(x)

So, here we will find the interval in which ln(x), 2, x, cos3x are continuous.

Calculation:

p1(x)=ln(x), p2(x)=x, p3(x)=2 and g(x)=cos3x

Now p1(x) is continuous on interval x>0

p2(x) and p3(x) is continuous everywhere.

p4(x) is continuous everywhere on

So, (0,) is the common interval of all

Therefore (0,) is the interval in which the theorem guarantees unique solution.

Conclusion:

Hence, the interval in which the theorem guarantees unique solution of the problem is (0,)

Expert Solution
Check Mark
To determine

(b)

The intervals for which Theorem 1 guarantees the existence of solution in that interval

Answer to Problem 1RP

Solution:

x(4,1)(1,1)(1,) are the intervals in which the theorem guarantees unique solution

Explanation of Solution

Given:

The given differential equation is (x21)y+(sinx)y+x+4y+exy=x2+3

Approach:

We will find the interval in which coefficient of given differential equation are continuous.

Calculation:

Simplifying the given differential equation

(x21)y+(sinx)y+x+4y+exy=x2+3y+sinxx21y+x+4yx21+exx21=x2+3x21  

Here p1(x)=sinxx21, p2(x)=x+4x21, p3(x)=exx21, and g(x)=x2+3x21

p1(x), p3(x) and g(x) is continuous for all x210

p2(x) is continuous for all x+4>0 and x210

So, x(4,1)(1,1)(1,)

Therefore, x(4,1)(1,1)(1,) are the intervals in which the theorem guarantees unique solution.

Conclusion:

Hence, the interval in which the theorem guarantees unique solution are x(4,1)(1,1)(1,)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Design a Turing Machine recognizing each of the following languages and draw its state diagram. Note that the transition functions of the Turing Machine must be in the format of “a → b,L/R", namely the machine reads single symbol a from the tape, writes single symbol b to the cell to replace a, and then goes to either left L or right R. You will receive 0 point if you do not follow this instruction. (1) {w|w=a²b³, n ≥ 0} (2) {w|w=a'b³,i0} (3) {w|w a'bick,i
Design a PDA recognizing each of the following languages and draw its state diagram. Note that the transition function must be in the format of “a, b →c", namely we can only push/pop one symbol into/from the stack one time upon one input symbol. You will receive 0 point if you push/pop multiple symbols into/from the stack one time upon one input symbol. (1) {w|wa"b", n is odd} = (2) {w|w=w², length of w is odd and Σ = {a,b} } (3) {w|w= = a²b²n, n ≥1 } (4) {w|w= =a^bn+mcm, n≥0, m ≥ 1 } (5) {w|w=a²b³n, n≥0} (6) {w|w= = a¹³, n ≥ 1, m≥ 1 and n‡m } Hint: two cases: n > m and n
[) Hwk 29 ✗ WHwk 30 (MA 244-03) (SP X - Logout Cengage Learning X MA244-03 Syllabus_Sprin X b Answered: [) Hwk 29 Hwk X https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606609 4. [-/3 Points] DETAILS MY NOTES LARLINALG8 7.4.013. Solve the system of first-order linear differential equations. (Use C1 and C2 as constants.) Y1' = -4Y1 Y2' = -12 (y1(t), Y2(t)) = ( 3 Need Help? Read It SUBMIT ANSWER 5. [-/3 Points] DETAILS MY NOTES LARLINALG8 7.4.019. Solve the system of first-order linear differential equations. (Use C1, C2, C3, and C4 as constants.) Y1' = 6y1 Y2' = 2y2 Y3' = -643 Y4' = -2y4 = (y1(t), y2(t), y3(t), Y4(t)) = Need Help? Read It SUBMIT ANSWER G Use the Principal Axes The X G cot(0) - Google Search ☑ B 90% + ASK YOUR TEACHER PRACTICE ANOTHER ill ASK YOUR TEACHER PRACTICE ANOTHER 6. [-/4 Points] DETAILS MY NOTES LARLINALG8 7.4.023. Solve the system of first-order linear differential equations. (Use C1 and C2 as constants.) ASK YOUR TEACHER Y1' = Y1 + 5y2 Y2'…

Chapter 6 Solutions

Fundamentals of Differential Equations and Boundary Value Problems

Ch. 6.1 - In Problems7-14, determine whether the given...Ch. 6.1 - In Problems7-14, determine whether the given...Ch. 6.1 - In Problems7-14, determine whether the given...Ch. 6.1 - In Problems7-14, determine whether the given...Ch. 6.1 - Using the Wronskian in Problems 15-18, verify that...Ch. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - In Problems 19-22, a particular solution and a...Ch. 6.1 - In Problems 19-22, a particular solution and a...Ch. 6.1 - In Problems 19-22, a particular solution and a...Ch. 6.1 - In Problems 19-22, a particular solution and a...Ch. 6.1 - Let L[y]:=y+y+xy, y1(x):=sinx, and y2(x):=x....Ch. 6.1 - Let L[y]:=yxy+4y3xy", y1(x)=cos2x, and y2(x):=1/3....Ch. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.2 - In Problems 1-14, find a general solution for the...Ch. 6.2 - Prob. 2ECh. 6.2 - In Problems 1-14, find a general solution for the...Ch. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Prob. 8ECh. 6.2 - Prob. 9ECh. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - In Problems 1-14, find a general solution for the...Ch. 6.2 - In Problems 15-18, find a general solution to the...Ch. 6.2 - Prob. 16ECh. 6.2 - In Problems 15 18, find a general solution to the...Ch. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - In Problems 1921, solve the given initial value...Ch. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - In Problems 22 and 23, find a general solution for...Ch. 6.2 - Prob. 24ECh. 6.2 - Prob. 25ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Find a general solution to y3yy=0 by using Newtons...Ch. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Higher-Order Cauchy-Euler Equations. A...Ch. 6.2 - Prob. 32ECh. 6.2 - On a smooth horizontal surface, a mass of m1 kg is...Ch. 6.2 - Suppose the two springs in the coupled mass-spring...Ch. 6.2 - Vibrating Beam. In studying the transverse...Ch. 6.3 - In Problems 1-4, use the method of undetermined...Ch. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - In Problems 5-10, find a general solution to the...Ch. 6.3 - In Problems 5-10, find a general solution to the...Ch. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - In Problems 5-10, find a general solution to the...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 11-20, find a differential operator...Ch. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - In Problems 21-30, use the annihilator method to...Ch. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - In Problems 31-33, solve the given initial value...Ch. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Use the annihilator method to show that if f(x) in...Ch. 6.3 - Prob. 37ECh. 6.3 - In Problems 38 and 39, use the elimination method...Ch. 6.3 - Prob. 39ECh. 6.4 - In Problems 1-6, use the method of variation of...Ch. 6.4 - Prob. 2ECh. 6.4 - In Problems 1-6, use the method of variation of...Ch. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - In Problems 1-6, use the method of variation of...Ch. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Given that {x,x1,x4} is a fundamental solution set...Ch. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.RP - Determine the intervals for which Theorem 1 on...Ch. 6.RP - Determine whether the given functions are linearly...Ch. 6.RP - Show that the set of functions...Ch. 6.RP - Find a general solution for the given differential...Ch. 6.RP - Find a general solution for the homogeneous linear...Ch. 6.RP - Prob. 6RPCh. 6.RP - Prob. 7RPCh. 6.RP - Use the annihilator method to determine the form...Ch. 6.RP - Find a general solution to the Cauchy-Euler...Ch. 6.RP - Find a general solution to the given Cauchy-Euler...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY