Concept explainers
For the following exercise, choose the correct answer choice.
A doctor and injects a patient with 13 milligrams of radioactive dye that decays exponentially. After 12 minutes, there are 4.75 milligrams of dye remaining in the patient’s system. Which is an appropriate model for this situation?
a.
b.
c.
d.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
College Algebra
Additional Math Textbook Solutions
Elementary Algebra: Concepts and Applications (10th Edition)
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
Differential Equations and Linear Algebra (4th Edition)
Intermediate Algebra for College Students (7th Edition)
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
- What is the carrying capacity for a population modeled by the logistic equation P(t)=250,0001+499e0.45t ? initial population for the model?arrow_forwardHector invests $10,000 at age 21. He hopes the investments will be worth when he turns 50. If the interest compounds continuously, approximately what rate of growth Will he need to achieve his goal?arrow_forwardThe population of a culture of bacteria is modeled by the logistic equation P(t)=14,2501+29e0.62t where t is inarrow_forward
- To the nearest whole number, what is the initial value of a population modeled by the logistic equation P(t)=1751+6.995e0.68t ? What is the carrying capacity?arrow_forwardThe table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forwardCesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take more or less than 230 years until only 1 milligram remains?arrow_forward
- The function f(x)=ex is called the___________ Exponential function. The number eis approximately equal to________.arrow_forwardSuppose that the initial mass of radioactive substance is m0 and the half-life of the substance is h. Let m(t) be the mass remaining at time t. a What is meant by the half-life h? b Write a formula for m(t) in terms of the half-life h. c Write a formula for the relative decay rate r in terms of the half-life h. d Write a formula for m(t) in terms of the relative decay rate r.arrow_forwardMatch the exponential function with one of the graphs labeled I,II,III and IV, shown below. (a) f(x)=2x (b) f(x)=2x (c) f(x)=2x (d) f(x)=2xarrow_forward
- Table 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. a. Let x represent time in years starting with x=0 for the year 1997. Let y represent the number of seals in thousands. Use logistic regression to fit a model to these data. b. Use the model to predict the seal population for the year 2020. c. To the nearest whole number, what is the limiting value of this model?arrow_forwardFor the following exercises, use this scenario: A tumor is injected with 0.5 grams of Iodine-125, which has a decay rate of 1.15% per day. A scientist begins with 250 grams of a radioactive substance. After 250 minutes, the sample has decayed to 32 grams. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest minute, what is the half-life of this substance?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning