Concept explainers
(a)
To write recursive rule for the lengths of the bones
(a)
Answer to Problem 52E
Recursive rule for the lengths of the bones
Explanation of Solution
Given:
The X-ray shows the lengths (in centimetres) of bones in a human hand.
Concept Used:
Fibonacci sequence: a sequence of numbers in which each number (Fibonacci number) is the sum of the two preceding numbers.
Calculation:
Given sequence
Therefore the sequence is Fibonacci sequence
Recursive rule for the lengths of bones is
Conclusion:
Recursive rule for the lengths of bones is
(b)
To measure different sections of hand and tell if they sequence can be represented by a recursively defined sequence
(b)
Answer to Problem 52E
Yes, lengths can be represented by a recursively defined sequence
Explanation of Solution
Given:
Measure the lengths of different sections of hand
Concept Used:
Fibonacci series: A series of numbers in which each number (Fibonacci number) is the sum of the two preceding numbers
Calculation:
Folding first finger in form of spiral and measuring different sections to get sequence
Also,
Hence,
These are Fibonacci numbers, so the sequence is Fibonacci sequence
Therefore,
Sequence can be defined recursively.
Conclusion:
Yes, lengths can be represented by a recursively defined sequence
Chapter 6 Solutions
BIG IDEAS MATH Integrated Math 1: Student Edition 2016
- Let f(x) = 4√√ If g(x) is the graph of f(x) shifted up 6 units and right 3 units, write a formula for g(x) g(x)=arrow_forwardSketch a graph of f(x) = −2|x − 3| +2 5 4 3 2 1 -5 -4 -3-2 -1 -1 -2 -3 -4 -5+ Clear All Draw: -2 3 4arrow_forwardReconsider the patient satisfaction data in Table 1. Fit a multiple regression model using both patient age and severity as the regressors. (a) Test for significance of regression. (b) Test for the individual contribution of the two regressors. Are both regressor variables needed in the model? (c) Has adding severity to the model improved the quality of the model fit? Explain your answer.arrow_forward
- The output voltage of a power supply is assumed to be normally distributed. Sixteen observations taken at random on voltage are as follows: 10.35, 9.30, 10.00, 9.96, 11.65, 12.00, 11.25, 9.58, 11.54, 9.95, 10.28, 8.37, 10.44, 9.25, 9.38, and 10.85. (a) Test the hypothesis that the mean voltage equals 12 V against a two-sided alternative using a = 0.05. (b) Construct a 95% two-sided confidence interval on μ. (c) Test the hypothesis that σ² = 11 using α = 0.05. (d) Construct a 95% two-sided confidence interval on σ. (e) Construct a 95% upper confidence interval on σ. (f) Does the assumption of normality seem reasonable for the output voltage?arrow_forwardAnalyze the residuals from the regression model on the patient satisfaction data from Exercise 3. Comment on the adequacy of the regression model.arrow_forward3 y 7 Find the length of the curve x= + on 3 ≤ y ≤5. 21 4yarrow_forward
- Consider the hypotheses: Hop=po H₁ppo where 2 is known. Derive a general expression for determining the sample size for detecting a true mean of 1μo with probability 1-ẞ if the type I error is a.arrow_forwardSuppose we wish to test the hypotheses: Họ : | = 15 H₁: 15 where we know that o² = 9.0. If the true mean is really 20, what sample size must be used to ensure that the probability of type II error is no greater than 0.10? Assume that a = 0.05.arrow_forwardMoment of a Force 2.14 Ma= Does Box Tip Over?=- 2.15 (change beam weight to 900 N)) X= 2.17 P= Varignon's Theorem 2.19 (change story height to 5m) Ma= 2.21 MA=. MB=_ 2.23 (change maximum tension to 2500 lbs) W= Couple and Moment of a Couple 2.24 MA=. MB=_ 2.26 (change force to 110 KN) F= M= Answer all parts, please.arrow_forward
- Match each statement to the set of shapes that best describes them. 1. Similar triangles by SSS 2. Similar triangles by SAS 3. Similar triangles by AA 4. The triangles are not similar > U E 35° 89° S F 89° J 35° 94° G 52° 90° E K 52° Iarrow_forwardTable 1 contains the data from a patient satisfaction survey for a group of 25 randomly selected patients at a hospital. In addition to satisfaction, data were collected on patient age and an index that measured the severity of illness. (a) Fit a linear regression model relating satisfaction to patient age. (b) Test for significance of regression. (c) What portion of the total variability is accounted for by the regressor variable age? Table 1: Patient Satisfaction Data Severity Observation Age (21) (x2) Satisfaction (y) 1 55 50 2 46 24 3 30 46 4 35 48 5 59 58 6 61 60 7 74 65 8 38 42 9 27 42 10 51 50 11 53 38 12 41 30 13 37 31 88 14 24 34 15 42 30 16 50 48 17 58 61 18 60 71 19 62 62 20 68 38 21 70 41 22 79 66 23 63 31 24 39 42 25 49 40 BE225222222222222222 68 77 96 80 43 44 26 88 75 57 56 88 102 88 70 43 46 56 59 26 83 75arrow_forwardMatch each transformation series with the diagram that applies to it. 1. (x, y) (x-10, y + 7) scale factor: 2 2. (x, y)(x-8, y+6) scale factor: 4 3. (x, y)(x+1, y - 5) scale factor: 5 D' 104º 6 2 -10 8 -6 F2 4 5 D 2 E -4 -6 100 E 8 10 Farrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education