EBK AUTOMOTIVE TECHNOLOGY
EBK AUTOMOTIVE TECHNOLOGY
5th Edition
ISBN: 8220100659843
Author: Halderman
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 66, Problem 1RQ

What is the difference between summer-blend and winter-blend gasoline?

Expert Solution & Answer
Check Mark
To determine

Difference between summer-blend and winter-blend gasoline.

Explanation of Solution

Gasoline:

Gasoline is the mixture of various hydrocarbons. Gasoline is refined from the crude petroleum oil. Gasoline is combusted along with air in the cylinder of the engine to produce required power output.

Volatility:

It is one of the properties of the gasoline to become vaporize. Gasoline should be vaporized to mix with air for proper combustion. Thus, the gasoline should possess good volatile property. The pressure and temperature of the atmosphere play a significant role in vaporizations of gasoline. The unit RVP (Reid vapor pressure) measures the volatility of a gasoline. RVP is the pressure of the vapor that is present above the fuel level when temperature of the fuel is 100°F (38°C).

Seasonal blending:

To normalize the pre or post vaporization of gasoline, blending is introduced into gasoline, depending on the seasonal pressure and temperature. It is classified into two types as follows:

  1. 1. Summer-blending – Do not vaporize at low temperatures.
  2. 2. Winter-blending - Vaporize at low temperatures.

Both the summer and winter blended gasolines are specially formulated gasolines to achieve proper and complete combustion depending on the season.

Difference between summer and winter blended gasoline:

The significant difference between the summer and winter blended gasoline is volatility. The volatility of summer-blended gasoline should be 7 PSI RVP and the volatility of winter blended gasoline should be 15 PSI RVP. The volatility of summer-blended gasoline should not exceed 10.5 PSI RVP.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The gears shown in the figure have a diametral pitch of 2 teeth per inch and a 20° pressure angle. The pinion rotates at 1800 rev/min clockwise and transmits 200 hp through the idler pair to gear 5 on shaft c. What forces do gears 3 and 4 transmit to the idler shaft? TS I y 18T 32T This a 12 x 18T C 48T 5
Question 1. Draw 3 teeth for the following pinion and gear respectively. The teeth should be drawn near the pressure line so that the teeth from the pinion should mesh those of the gear. Drawing scale (1:1). Either a precise hand drawing or CAD drawing is acceptable. Draw all the trajectories of the involute lines and the circles. Specification: 18tooth pinion and 30tooth gear. Diameter pitch=P=6 teeth /inch. Pressure angle:20°, 1/P for addendum (a) and 1.25/P for dedendum (b). For fillet, c=b-a.
5. The figure shows a gear train. There is no friction at the bearings except for the gear tooth forces. The material of the milled gears is steel having a Brinell hardness of 170. The input shaft speed (n2) is 800 rpm. The face width and the contact angle for all gears are 1 in and 20° respectively. In this gear set, the endurance limit (Se) is 15 kpsi and nd (design factor) is 2. (a) Find the revolution speed of gear 5. (b) Determine whether each gear satisfies the design factor of 2.0 for bending fatigue. (c) Determine whether each gear satisfies the design factor of 2.0 for surface fatigue (contact stress). (d) According to the computation results of the questions (b) and (c), explain the possible failure mechanisms for each gear. N4=28 800rpm N₁=43 N5=34 N₂=14 P(diameteral pitch)=8 for all gears Coupled to 2.5hp motor

Chapter 66 Solutions

EBK AUTOMOTIVE TECHNOLOGY

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Text book image
Automotive Technology
Mechanical Engineering
ISBN:9781337794213
Author:ERJAVEC, Jack.
Publisher:Cengage,
Text book image
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License