DIFFERENTIAL EQUATIONS W/WILEYPLUS
DIFFERENTIAL EQUATIONS W/WILEYPLUS
3rd Edition
ISBN: 9781119764618
Author: BRANNAN
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6.6, Problem 15P

Undetermined Coefficients. For each of the nonhomogeneous terms specified in Problems 14 through 16, use the method of undetermined coefficients to find a particular solution of

x ' = ( 2 1 1 2 ) x + g ( t ) = Ax + g ( t ) (ii)

Given that the general solution of the corresponding homogeneous system x' = Ax is

x = c 1 e 3 t ( 1 1 ) + c 2 e t ( 1 1 )

g ( t ) = ( sin t 0 ) = sin t ( 1 0 ) .

Since the entry of g ( t ) contains a sine function, substitute an expression of the form

x p ( t ) = ( cos t ) a + ( sin t ) b = cos t ( a 1 a 2 ) + sin t ( b 1 b 2 )

Into Eq. (ii) and match the coefficients of the sine function and the cosine function on both sides of the resulting equation to obtain the two systems

Aa = b , Ab = a ( 1 0 ) .

Show that ( A 2 +I 2 ) a = ( 1 0 ) and solvefor a . Then substitute thisresult into the second equation and solve for b .

Blurred answer
Students have asked these similar questions
Consider the function f(x) = x²-1. (a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative. Show all your steps clearly. (b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the graph where x 1 and x-> 1+h (for a small positive value of h, illustrate conceptually). Then, draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the value you found in part (a). (c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in the context of the graph of f(x). How does the rate of change of this function vary at different points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist, state that fact. и (a) f'(-5) (b) f'(-3) (c) f'(0) (d) f'(5) 2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5) = 4. - 3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2) and f'(2).
A marketing agency wants to determine whether different advertising platforms generate significantly different levels of customer engagement. The agency measures the average number of daily clicks on ads for three platforms: Social Media, Search Engines, and Email Campaigns. The agency collects data on daily clicks for each platform over a 10-day period and wants to test whether there is a statistically significant difference in the mean number of daily clicks among these platforms. Conduct ANOVA test. You can provide your answer by inserting a text box and the answer must include: also please provide a step by on getting the answers in excel Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value.

Chapter 6 Solutions

DIFFERENTIAL EQUATIONS W/WILEYPLUS

Ch. 6.1 - Determine the matrix K and input g(t) if the (23)...Ch. 6.1 - Find a system of first order linear differential...Ch. 6.1 - An initial amount of tracer (such as a dye or a...Ch. 6.1 - Using matrix notation, show that the system of...Ch. 6.1 - Consider the plant equation (26) for the control...Ch. 6.2 - In each of problems 1 through 6, determine...Ch. 6.2 - In each of problems 1 through 6, determine...Ch. 6.2 - In each of problems 1 through 6, determine...Ch. 6.2 - In each of problems 1 through 6, determine...Ch. 6.2 - In each of problems through ,determine intervals...Ch. 6.2 - In each of problems 1 through 6, determine...Ch. 6.2 - Consider the vectors x1(t)=(et2etet),...Ch. 6.2 - Determine whether , , form a fundamental set...Ch. 6.2 - Determine whether x1(t)=et(101), x2(t)=et(141),...Ch. 6.2 - In section it was shown that if and are...Ch. 6.2 - In each of problems 11 through 16, verify that the...Ch. 6.2 - In each of problems 11 through 16, verify that the...Ch. 6.2 - In each of problems 11 through 16, verify that the...Ch. 6.2 - In each of problems through , verify that the...Ch. 6.2 - In each of problems through , verify that the...Ch. 6.2 - In each of problems through , verify that the...Ch. 6.2 - Verify that the differential operator defined by...Ch. 6.3 - In each of problems 1 through 8, find the general...Ch. 6.3 - In each of problems through ,find the general...Ch. 6.3 - In each of problems through ,find the general...Ch. 6.3 - In each of problems through ,find the general...Ch. 6.3 - In each of problems 1 through 8, find the general...Ch. 6.3 - In each of problems 1 through 8, find the general...Ch. 6.3 - In each of problems through ,find the general...Ch. 6.3 - In each of problems 1 through 8, find the general...Ch. 6.3 - In each of problems through , solve the given...Ch. 6.3 - In each of problems 9 through 12, solve the given...Ch. 6.3 - In each of problems 9 through 12, solve the given...Ch. 6.3 - In each of problems 9 through 12, solve the given...Ch. 6.3 - Using the rate equations (20) through (22),...Ch. 6.3 - Diffusion on a One-dimensional Lattice with an...Ch. 6.3 - Find constant vectors and such that the...Ch. 6.3 - Find constant vectors and such that the...Ch. 6.3 - A radioactive substance having decay rate ...Ch. 6.3 - For each of the matrices in Problems 18 through...Ch. 6.3 - For each of the matrices in Problems through ,...Ch. 6.3 - For each of the matrices in Problems through ,...Ch. 6.3 - For each of the matrices in Problems through ,...Ch. 6.3 - For each of the matrices in Problems 18 through...Ch. 6.3 - For each of the matrices in Problems through ,...Ch. 6.4 - In each of problems through , express the...Ch. 6.4 - In each of problems 1 through 8, express the...Ch. 6.4 - In each of problems through , express the...Ch. 6.4 - In each of problems through , express the...Ch. 6.4 - In each of problems 1 through 8, express the...Ch. 6.4 - In each of problems 1 through 8, express the...Ch. 6.4 - In each of problems through , express the...Ch. 6.4 - In each of problems through , express the...Ch. 6.4 - (a) Find constant vectors and such that the...Ch. 6.4 - (a) Find constant vectors and such that the...Ch. 6.4 - In this problem, we indicate how to show that...Ch. 6.4 - Consider the two-mass, three-spring system of...Ch. 6.4 - Consider the two-mass, three-spring system whose...Ch. 6.4 - Consider the two-mass, three-spring system whose...Ch. 6.4 - For each of the matrices in problem 15 through 18...Ch. 6.4 - For each of the matrices in problem through use...Ch. 6.4 - For each of the matrices in problem 15 through 18...Ch. 6.4 - For each of the matrices in problem 15 through 18...Ch. 6.5 - In each of problem through , find a fundamental...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem through , find a fundamental...Ch. 6.5 - In each of problem through , find a fundamental...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem through , find a fundamental...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - In each of problem 1 through 14, find a...Ch. 6.5 - Solve the initial value problem...Ch. 6.5 - Solve the initial value problem...Ch. 6.5 - In each of Problems 17 through 20, use the method...Ch. 6.5 - In each of Problems through , use the method of...Ch. 6.5 - In each of Problems 17 through 20, use the method...Ch. 6.5 - In each of Problems 17 through 20, use the method...Ch. 6.5 - Consider an oscillator satisfying the initial...Ch. 6.5 - The matrix of coefficients for the system of...Ch. 6.5 - Assume that the real nn matrix A has n linearly...Ch. 6.5 - The Method of Successive Approximations. Consdier...Ch. 6.6 - Assuming that is a fundamental matrix for , show...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - In each of Problems 2 through 9, find the general...Ch. 6.6 - Diffusion of particles on a lattice with...Ch. 6.6 - Find numerical approximations to the initial value...Ch. 6.6 - The equations presented in Section 6.1 for...Ch. 6.6 - When viscous damping forces are included and the...Ch. 6.6 - Undetermined Coefficients. For each of the...Ch. 6.6 - Undetermined Coefficients. For each of the...Ch. 6.6 - Undetermined Coefficients. For each of the...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 1 through 8, find a...Ch. 6.7 - In each of Problems 9 and 10, find the solution of...Ch. 6.7 - In each of Problems 9 and 10, find the solution of...Ch. 6.7 - In each of Problems 11and12, find the solution of...Ch. 6.7 - In each of Problems 11 and 12, find the solution...Ch. 6.P1 - The Undamped Building. (a) Show that...Ch. 6.P1 - The Building with Damping Devices. In addition to...Ch. 6.P1 - A majority of the buildings that collapsed during...Ch. 6.P2 - Derive the system of equations (1) by applying...Ch. 6.P2 - Find the eigenvalues and eigenvectors of the...Ch. 6.P2 - From the normal mode representation of the...Ch. 6.P2 - Repeat Problem 2 for a system of four masses...Ch. 6.P2 - Find the rank of the controllability matrix for...Ch. 6.P2 - Find the rank of the controllability matrix for...Ch. 6.P2 - Prove the Cayley–Hamilton theorem for the special...Ch. 6.P2 - A symmetric matrix is said to be negative definite...Ch. 6.P2 - For the three-mass system, find a scalar control...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY