
Pearson eText Calculus and Its Applications, Brief Edition -- Instant Access (Pearson+)
12th Edition
ISBN: 9780136880257
Author: Marvin Bittinger, David Ellenbogen
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.5, Problem 57E
Discuss the difference between solving maximum-minimum problem using the method of Lagrange multipliers and the method of Section 6.3
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 6 Solutions
Pearson eText Calculus and Its Applications, Brief Edition -- Instant Access (Pearson+)
Ch. 6.1 - 2. .
Ch. 6.1 - Forf(x,y)=x23xy,find(0,2),f(2,3),andf(10,5).Ch. 6.1 - Prob. 3ECh. 6.1 - 3. .
Ch. 6.1 - 6. .
Ch. 6.1 - Forf(x,y)=Inx+y3,findf(e,2),f(e2,4),andf(e3,5).Ch. 6.1 - 8. .
Ch. 6.1 - Forf(x,y,z)=x2y2+z2,findf(1,2,3)andf(2,1,3).Ch. 6.1 - In Exercises 9-14, determine the domain of each...Ch. 6.1 - In Exercises 9-14, determine the domain of each...
Ch. 6.1 - In Exercises 9-14, determine the domain of each...Ch. 6.1 - In Exercises 9-14, determine the domain of each...Ch. 6.1 - Yield. The yield of a stock is given by YD,P=DP,...Ch. 6.1 - Prob. 14ECh. 6.1 - 17. Cost of storage equipment. Consider the cost...Ch. 6.1 - Savings and interest. A sum of $1000 is deposited...Ch. 6.1 - Monthly car payments. Ashley wants to buy a 2019...Ch. 6.1 - Monthly car payments. Kim is shopping for a car....Ch. 6.1 - 21. Poiseuille’s Law. The speed of blood in a...Ch. 6.1 - Body surface area. The Haycock formula for...Ch. 6.1 - 23. Body surface area. The Mosteller formula for...Ch. 6.1 - Prob. 22ECh. 6.1 - Baseball: total bases. A batters total bases is a...Ch. 6.1 - Soccer: point system. A point system is used to...Ch. 6.1 - 26. Dewpoint. The dewpoint is the temperature at...Ch. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Explain the difference between a function of two...Ch. 6.1 - 30. Find some examples of function of several...Ch. 6.1 - Wind Chill Temperature. Because wind speed...Ch. 6.1 - Wind Chill Temperature.
Because wind speed...Ch. 6.1 - Prob. 33ECh. 6.1 - Wind Chill Temperature.
Because wind speed...Ch. 6.1 - Use a graphics program such as Maple or...Ch. 6.1 - Use a 3D graphics program to generate the graph of...Ch. 6.1 - Use a 3D graphics program to generate the graph of...Ch. 6.1 - Use a 3D graphics program to generate the graph of...Ch. 6.1 - Use a 3D graphics program to generate the graph of...Ch. 6.1 - Prob. 40ECh. 6.1 - Use a 3D graphics program to generate the graph of...Ch. 6.2 - Find zx,zy,zx|(2,3),andzy|(0,5) z=2z3yCh. 6.2 - Find zx,zy,zx|(2,3),andzy|(0,5) z=7x5yCh. 6.2 - Find zx,zy,zx|(2,3),andzy|(0,5) z=2x3+3xyxCh. 6.2 - Prob. 4ECh. 6.2 - .
6.
Ch. 6.2 - .
5.
Ch. 6.2 - Find.
7.
Ch. 6.2 - Find fx,fy,fz(2,1),andfy(3,2). f(x,y)=x2y2Ch. 6.2 - Prob. 9ECh. 6.2 - Find
9.
Ch. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Find fxandfy f(x,y)=xy+y5xCh. 6.2 - Find
20.
Ch. 6.2 - Prob. 20ECh. 6.2 - Find fbandfm f(b,m)=5m2mb23b+(2m+b8)2+(3m+b9)2Ch. 6.2 - Find fbandfm f(b,m)=m3+4m2bb2+(2m+b5)2+(3m+b6)2Ch. 6.2 - Find fx,fy,andf (The symbol is the Greek letter...Ch. 6.2 - Find fx,fy,andf (The symbol is the Greek letter...Ch. 6.2 - Find (The symbol is the Greek letter...Ch. 6.2 - Find fx,fy,andf (The symbol is the Greek letter...Ch. 6.2 - Find the four second-order partial derivatives....Ch. 6.2 - Find the four second-order partial derivatives....Ch. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Find. (Remember, means to differentiate with...Ch. 6.2 - Find fxy,fxy,fyx,andfyy. (Remember, fyx means to...Ch. 6.2 - Find. (Remember, means to differentiate with...Ch. 6.2 - Find. (Remember, means to differentiate with...Ch. 6.2 - Find fxy,fxy,fyx,andfyy. (Remember, fyx means to...Ch. 6.2 - Find. (Remember, means to differentiate with...Ch. 6.2 - Prob. 37ECh. 6.2 - Let z=fx,y=xy. Use differentials to estimate...Ch. 6.2 - Let z=fx,y=2x+y2. Use differentials to estimate...Ch. 6.2 - Let z=fx,y=exy. Use differentials to estimate...Ch. 6.2 - The Cobb-Douglas model. Lincolnville Sporting...Ch. 6.2 - The Cobb-Douglas model. Riverside Appliances has...Ch. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Nursing facilities. A study of Texas nursing homes...Ch. 6.2 - Temperaturehumidity Heat Index. In summer, higher...Ch. 6.2 - Prob. 48ECh. 6.2 - Use the equation for Th given above for Exercises...Ch. 6.2 - Use the equation for Th given above for Exercises...Ch. 6.2 - Prob. 51ECh. 6.2 - Prob. 52ECh. 6.2 - Reading Ease
The following formula is used by...Ch. 6.2 - Reading Ease
The following formula is used by...Ch. 6.2 - Prob. 55ECh. 6.2 - Reading Ease The following formula is used by...Ch. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 59ECh. 6.2 - Find fxandft. f(x,t)=(x2+t2x2t2)5Ch. 6.2 - In Exercises 63 and 64, find fxx,fxy,fyx,andfyy...Ch. 6.2 - In Exercises 63 and 64, find fxx,fxy,fyx,andfyy...Ch. 6.2 - Prob. 63ECh. 6.2 - Prob. 64ECh. 6.2 - Prob. 65ECh. 6.2 - Prob. 66ECh. 6.2 - Do some research on the Cobb-Douglas production...Ch. 6.2 - Considerf(x,y)=In(x2+y2). Show that f is a...Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values. ...Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values. ...Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum and minimum values. ...Ch. 6.3 - Find the relative maximum and minimum values....Ch. 6.3 - Find the relative maximum or minimum value. 15....Ch. 6.3 - Find the relative maximum or minimum value. 16....Ch. 6.3 - In Exercises 15-22, assume that relative maximum...Ch. 6.3 - In Exercises 15-22, assume that relative maximum...Ch. 6.3 - In Exercises 15-22, assume that relative maximum...Ch. 6.3 - In Exercises 15-22, assume that relative maximum...Ch. 6.3 - In Exercises 23-26, find the relative maximum and...Ch. 6.3 - In Exercises 23-26, find the relative maximum and...Ch. 6.3 - In Exercises 23-26, find the relative maximum and...Ch. 6.3 - In Exercises 23-26, find the relative maximum and...Ch. 6.3 - Explain the difference between a relative minimum...Ch. 6.3 - Use a 3D graphics program to graph each of the...Ch. 6.3 - Use a 3D graphics program to graph each of the...Ch. 6.3 - Use a 3D graphics program to graph each of the...Ch. 6.3 - Use a 3D graphics program to graph each of the...Ch. 6.4 - In Exercises 1 – 4, find the regression line for...Ch. 6.4 - In Exercises 1 4, find the regression line for...Ch. 6.4 - In Exercises 1 – 4, find the regression line for...Ch. 6.4 - In Exercises 1 4, find the regression line for...Ch. 6.4 - Prob. 5ECh. 6.4 - In Exercises 5-8, find an exponential regression...Ch. 6.4 - In Exercises 5-8, find an exponential regression...Ch. 6.4 - In Exercises 5-8, find an exponential regression...Ch. 6.4 - Prob. 18ECh. 6.5 - Prob. 1ECh. 6.5 - Find the extremum of f(x,y) subject to given...Ch. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Find the extremum of f(x,y) subject to given...Ch. 6.5 - Find the extremum of f(x,y) subject to given...Ch. 6.5 - Find the extremum of subject to given constraint,...Ch. 6.5 - Find the extremum of f(x,y) subject to given...Ch. 6.5 - Find the extremum of f(x,y) subject to given...Ch. 6.5 - Find the extremum of subject to given constraint,...Ch. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - 19. Maximizing typing area. A standard piece of...Ch. 6.5 - 20. Maximizing room area. A carpenter is building...Ch. 6.5 - 21. Minimizing surface area. An oil drum of...Ch. 6.5 - Juice-can problem. A large juice can has a volume...Ch. 6.5 - Maximizing total sales. Total sales, S, of...Ch. 6.5 - Maximizing total sales. Total sales, S, of Sea...Ch. 6.5 - 25. Minimizing construction costs. Denney...Ch. 6.5 - Minimizing the costs of container construction....Ch. 6.5 - Minimizing total cost. Each unit of a product can...Ch. 6.5 - 28. Minimizing distance and cost. A highway passes...Ch. 6.5 - 29. Minimizing distance and cost. From the center...Ch. 6.5 -
In Exercises 30-33, find the absolute maximum and...Ch. 6.5 - In Exercises 30-33, find the absolute maximum and...Ch. 6.5 - In Exercises 30-33, find the absolute maximum and...Ch. 6.5 - In Exercises 30-33, find the absolute maximum and...Ch. 6.5 - Business: maximizing profits with constraints. A...Ch. 6.5 - Business: minimizing costs with constraints....Ch. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - Find the indicated maximum or minimum value of...Ch. 6.5 - Find the indicated maximum or minimum value of...Ch. 6.5 - Find the indicated maximum or minimum value of...Ch. 6.5 - Find the indicated maximum or minimum value of...Ch. 6.5 - Prob. 46ECh. 6.5 - Economics: the Law of Equimarginal Productivity....Ch. 6.5 - 44. Business: maximizing production. A computer...Ch. 6.5 - 45. Discuss the difference between solving...Ch. 6.5 - Prob. 59ECh. 6.6 - Prob. 1ECh. 6.6 - Prob. 2ECh. 6.6 - In Exercises 1–16, evaluate the double integral....Ch. 6.6 - In Exercises 1–16, evaluate the double integral....Ch. 6.6 - In Exercises 1–16, evaluate the double integral....Ch. 6.6 - Prob. 6ECh. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.6 - In Exercises 1–16, evaluate the double integral....Ch. 6.6 - In Exercises 1–16, evaluate the double integral....Ch. 6.6 - In Exercises 1–16, evaluate the double integral....Ch. 6.6 - Prob. 15ECh. 6.6 - Prob. 16ECh. 6.6 - Prob. 17ECh. 6.6 - Prob. 18ECh. 6.6 - Prob. 19ECh. 6.6 - 17–32. For each double integral in Exercises...Ch. 6.6 - 17–32. For each double integral in Exercises...Ch. 6.6 - 17–32. For each double integral in Exercises...Ch. 6.6 - Prob. 23ECh. 6.6 - Prob. 24ECh. 6.6 - Prob. 25ECh. 6.6 - 17–32. For each double integral in Exercises...Ch. 6.6 - 17–32. For each double integral in Exercises...Ch. 6.6 - Prob. 28ECh. 6.6 - Prob. 29ECh. 6.6 - Prob. 30ECh. 6.6 - Prob. 31ECh. 6.6 - Prob. 32ECh. 6.6 - Find the volume of the solid capped by the surface...Ch. 6.6 - 16. Find the volume of the solid capped by the...Ch. 6.6 - 17. Find the average value of.
Ch. 6.6 - 18. Find the average value of.
Ch. 6.6 - 19. Find the average value of, where the region of...Ch. 6.6 - Prob. 38ECh. 6.6 - 21. Life sciences: population. The population...Ch. 6.6 - 22. Life sciences: population. The population...Ch. 6.6 - Prob. 41ECh. 6.6 - Prob. 42ECh. 6.6 - Prob. 43ECh. 6.6 - Is evaluated in much the same way as a double...Ch. 6 - Match each expression in column A with an...Ch. 6 - Prob. 2RECh. 6 - Prob. 3RECh. 6 - Prob. 4RECh. 6 - Prob. 5RECh. 6 - Prob. 6RECh. 6 - Prob. 7RECh. 6 - Prob. 8RECh. 6 - Given f(x,y)=ey+3xy3+2y, find each of the...Ch. 6 - Given, find each of the following
10.
Ch. 6 - Given f(x,y)=ey+3xy3+2y, find each of the...Ch. 6 - Given, find each of the following
12.
Ch. 6 - Given, find each of the following
13.
Ch. 6 - Given f(x,y)=ey+3xy3+2y, find each of the...Ch. 6 - Given, find each of the following
15.
Ch. 6 - 16. State the domain of
Ch. 6 - Given, find each of the following
17.
Ch. 6 - Given z=2x3Iny+xy2, find each of the following...Ch. 6 - Given, find each of the following
19.
Ch. 6 - Given, find each of the following
20.
Ch. 6 - Given, find each of the following
21.
Ch. 6 - Given, find each of the following
22.
Ch. 6 - Find the relative maximum and minimum values [6.3]...Ch. 6 - Prob. 24RECh. 6 - Prob. 25RECh. 6 - Prob. 26RECh. 6 - Prob. 29RECh. 6 - Find the extremum of f(x,y)=6xy subject to the...Ch. 6 - Prob. 31RECh. 6 - Find the absolute maximum and minimum values of...Ch. 6 - Evaluate [6.6] 0112x2y3dydxCh. 6 - Evaluate
[6.6]
33.
Ch. 6 - Business: demographics. The density of students...Ch. 6 - 35. Evaluate
.
Ch. 6 - Prob. 37RECh. 6 - Prob. 39RECh. 6 - Prob. 1TCh. 6 - Prob. 2TCh. 6 - Prob. 3TCh. 6 - Given fx,y=2x3y+y, find each of the following. 4....Ch. 6 - Given fx,y=2x3y+y, find each of the following. 5....Ch. 6 - Given fx,y=2x3y+y, find each of the following. 6....Ch. 6 - Prob. 7TCh. 6 - Prob. 8TCh. 6 - Prob. 9TCh. 6 - Prob. 10TCh. 6 - Prob. 11TCh. 6 - Prob. 12TCh. 6 - Prob. 13TCh. 6 - 14. Business: maximizing production. Southwest...Ch. 6 - Find the largest possible volume of a rectangular...Ch. 6 - Find the average value of fx,y=x+2y over the...
Additional Math Textbook Solutions
Find more solutions based on key concepts
A categorical variable has three categories, with the following frequencies of occurrence: a. Compute the perce...
Basic Business Statistics, Student Value Edition
If you multiply an odd number by 2 and add 1, is your answer even or odd?
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
The null hypothesis, alternative hypothesis, test statistic, P-value and state the conclusion. To test: Whether...
Elementary Statistics
Standard Normal Distribution. In Exercises 17–36, assume that a randomly selected subject is given a bone densi...
Elementary Statistics (13th Edition)
Find the first and second derivatives of the functions in Exercises 4552.
45. y =
University Calculus: Early Transcendentals (4th Edition)
If f(x) = 1/(x3 + 1), what is f(2)? What is f(y2)?
Calculus: Early Transcendentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY