EBK CALCULUS: EARLY TRANSCENDENTALS
4th Edition
ISBN: 9781319055905
Author: FRANZOSA
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.5, Problem 16E
To determine
To calculate:
the work against gravity required to build a box.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A swimming pool is 6 feet deep atthe deep end. It is 10 by 16 feetat the top and 10 by 4 feet at the bottom
∆V=5ft3
Assuming that water has a density of 62.4 pounds per cubic foot, find theweight/force of ∆V and include units.
4. A trough is filled with a liquid of density 875 kg/m³. The
ends of the trough are equilateral triangles with sides 14 m
long and vertex at the bottom. Find the hydrostatic force on
one end of the trough. (Use 9.8 m/s² for the acceleration due
to gravity.) Show all your steps clearly.
A cylindrical tank, shown to the right, has height 8 m and radius 4 m. Suppose the water
tank is half-full of water. Determine the work required to empty the tank by pumping the
water to a level 6 m above the top of the tank. Use 1000 kg/m for the density of water
and 9.8 m/s² for the acceleration due to gravity.
3
4 m
Draw a y-axis in the vertical direction (parallel to gravity) and choose the center of the bottom of the tank as the
origin. For 0 ≤ y ≤8, find the cross-sectional area A(y).
A(y) =
(Type an exact answer, using as needed.)
8 m
Chapter 6 Solutions
EBK CALCULUS: EARLY TRANSCENDENTALS
Ch. 6.1 - Prob. 1PQCh. 6.1 - Prob. 2PQCh. 6.1 - Prob. 3PQCh. 6.1 - Prob. 4PQCh. 6.1 - Prob. 5PQCh. 6.1 - Prob. 6PQCh. 6.1 - Prob. 1ECh. 6.1 - Prob. 2ECh. 6.1 - Prob. 3ECh. 6.1 - Prob. 4E
Ch. 6.1 - Prob. 5ECh. 6.1 - Prob. 6ECh. 6.1 - Prob. 7ECh. 6.1 - Prob. 8ECh. 6.1 - Prob. 9ECh. 6.1 - Prob. 10ECh. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - Prob. 23ECh. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - Prob. 42ECh. 6.1 - Prob. 43ECh. 6.1 - Prob. 44ECh. 6.1 - Prob. 45ECh. 6.1 - Prob. 46ECh. 6.1 - Prob. 47ECh. 6.1 - Prob. 48ECh. 6.1 - Prob. 49ECh. 6.1 - Prob. 50ECh. 6.1 - Prob. 51ECh. 6.1 - Prob. 52ECh. 6.1 - Prob. 53ECh. 6.1 - Prob. 54ECh. 6.1 - Prob. 55ECh. 6.1 - Prob. 56ECh. 6.1 - Prob. 57ECh. 6.1 - Prob. 58ECh. 6.1 - Prob. 59ECh. 6.1 - Prob. 60ECh. 6.1 - Prob. 61ECh. 6.1 - Prob. 62ECh. 6.1 - Prob. 63ECh. 6.1 - Prob. 64ECh. 6.1 - Prob. 65ECh. 6.1 - Prob. 66ECh. 6.1 - Prob. 67ECh. 6.1 - Prob. 68ECh. 6.2 - Prob. 1PQCh. 6.2 - Prob. 2PQCh. 6.2 - Prob. 3PQCh. 6.2 - Prob. 4PQCh. 6.2 - Prob. 5PQCh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.2 - Prob. 3ECh. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Prob. 8ECh. 6.2 - Prob. 9ECh. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - Prob. 25ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 59ECh. 6.2 - Prob. 60ECh. 6.2 - Prob. 61ECh. 6.2 - Prob. 62ECh. 6.2 - Prob. 63ECh. 6.2 - Prob. 64ECh. 6.2 - Prob. 65ECh. 6.2 - Prob. 66ECh. 6.2 - Prob. 67ECh. 6.2 - Prob. 68ECh. 6.2 - Prob. 69ECh. 6.2 - Prob. 70ECh. 6.3 - Prob. 1PQCh. 6.3 - Prob. 2PQCh. 6.3 - Prob. 3PQCh. 6.3 - Prob. 4PQCh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Prob. 47ECh. 6.3 - Prob. 48ECh. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.3 - Prob. 54ECh. 6.3 - Prob. 55ECh. 6.3 - Prob. 56ECh. 6.3 - Prob. 57ECh. 6.3 - Prob. 58ECh. 6.3 - Prob. 59ECh. 6.3 - Prob. 60ECh. 6.3 - Prob. 61ECh. 6.3 - Prob. 62ECh. 6.3 - Prob. 63ECh. 6.3 - Prob. 64ECh. 6.3 - Prob. 65ECh. 6.3 - Prob. 66ECh. 6.3 - Prob. 67ECh. 6.3 - Prob. 68ECh. 6.4 - Prob. 1PQCh. 6.4 - Prob. 2PQCh. 6.4 - Prob. 3PQCh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Prob. 35ECh. 6.4 - Prob. 36ECh. 6.4 - Prob. 37ECh. 6.4 - Prob. 38ECh. 6.4 - Prob. 39ECh. 6.4 - Prob. 40ECh. 6.4 - Prob. 41ECh. 6.4 - Prob. 42ECh. 6.4 - Prob. 43ECh. 6.4 - Prob. 44ECh. 6.4 - Prob. 45ECh. 6.4 - Prob. 46ECh. 6.4 - Prob. 47ECh. 6.4 - Prob. 48ECh. 6.4 - Prob. 49ECh. 6.4 - Prob. 50ECh. 6.4 - Prob. 51ECh. 6.4 - Prob. 52ECh. 6.4 - Prob. 53ECh. 6.4 - Prob. 54ECh. 6.4 - Prob. 55ECh. 6.4 - Prob. 56ECh. 6.4 - Prob. 57ECh. 6.4 - Prob. 58ECh. 6.4 - Prob. 59ECh. 6.4 - Prob. 60ECh. 6.4 - Prob. 61ECh. 6.4 - Prob. 62ECh. 6.4 - Prob. 63ECh. 6.4 - Prob. 64ECh. 6.4 - Prob. 65ECh. 6.4 - Prob. 66ECh. 6.5 - Prob. 1PQCh. 6.5 - Prob. 2PQCh. 6.5 - Prob. 3PQCh. 6.5 - Prob. 4PQCh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - Prob. 27ECh. 6.5 - Prob. 28ECh. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.5 - Prob. 35ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - Prob. 38ECh. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - Prob. 42ECh. 6.5 - Prob. 43ECh. 6 - Prob. 1CRECh. 6 - Prob. 2CRECh. 6 - Prob. 3CRECh. 6 - Prob. 4CRECh. 6 - Prob. 5CRECh. 6 - Prob. 6CRECh. 6 - Prob. 7CRECh. 6 - Prob. 8CRECh. 6 - Prob. 9CRECh. 6 - Prob. 10CRECh. 6 - Prob. 11CRECh. 6 - Prob. 12CRECh. 6 - Prob. 13CRECh. 6 - Prob. 14CRECh. 6 - Prob. 15CRECh. 6 - Prob. 16CRECh. 6 - Prob. 17CRECh. 6 - Prob. 18CRECh. 6 - Prob. 19CRECh. 6 - Prob. 20CRECh. 6 - Prob. 21CRECh. 6 - Prob. 22CRECh. 6 - Prob. 23CRECh. 6 - Prob. 24CRECh. 6 - Prob. 25CRECh. 6 - Prob. 26CRECh. 6 - Prob. 27CRECh. 6 - Prob. 28CRECh. 6 - Prob. 29CRECh. 6 - Prob. 30CRECh. 6 - Prob. 31CRECh. 6 - Prob. 32CRECh. 6 - Prob. 33CRECh. 6 - Prob. 34CRECh. 6 - Prob. 35CRECh. 6 - Prob. 36CRECh. 6 - Prob. 37CRECh. 6 - Prob. 38CRECh. 6 - Prob. 39CRECh. 6 - Prob. 40CRECh. 6 - Prob. 41CRECh. 6 - Prob. 42CRECh. 6 - Prob. 43CRECh. 6 - Prob. 44CRECh. 6 - Prob. 45CRECh. 6 - Prob. 46CRECh. 6 - Prob. 47CRECh. 6 - Prob. 48CRECh. 6 - Prob. 49CRECh. 6 - Prob. 50CRECh. 6 - Prob. 51CRECh. 6 - Prob. 52CRECh. 6 - Prob. 53CRECh. 6 - Prob. 54CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Suppose that r=12 cm and h=15 cm in the right circular cylinder. Find the exact and approximate a lateral area. b total area. c volume.arrow_forwardA full water tank in the shape of an inverted right circular cone is 8 m across the top and 4 m high. If the surface of the water in the tank is 2 m below the top of the tank, how much work is required to pump all the water over the top of the tank? (The density of water is 1000 kg/m3. Assume g = 9.8 m/s2.) Answer in exact formarrow_forwardA tank full of water has the shape of an inverted cone (with the point at the bottom). The cone has a diameter of 6 m and a height of 4 m, and it is completely full of water. We're going to calculate the work needed to pump all of the water out over the side of the tank. Assume that acceleration due to gravity is 9.8 m/s2, and the density of water is 1000 kg/m³. (a) Draw a picture of the conical tank. We're going to "slice" the water horizontally. Draw one such horizontal slice on your picture. que sexood sds all (b) Calculate the volume of your horizontal slice, then calculate the mass of your slice, the force needed to lift it, and the work needed to lift it all the way to the top. Volume of slice = tot base a Mass of slice = Force to lift slice = Distance to lift slice = Work to lift slice to top = 90-120 (c) Use a definite integral to calculate the total work needed to pump all of the water out over the side of the tank.arrow_forward
- The Deligne Dam on the Cayley River is built so that the wall facing the water is shaped like the region 0.6x² and below the line 2 above the curve y y = 280. (Here, distances are measured in meters.) The water level is 34 meters below the top of the dam. Find the force (in Newtons) exerted on the dam by kg m³ = water pressure. (Water has a density of 1000- and the acceleration of gravity is 9.8 m sec² .) " Note: Weight density of water is 1000 (9.8)=9800 N/m^3arrow_forwardA tank shown below has vertical ends in the shape of isosceles triangles. Its dimensions are given as L = 9 m, w = 2.3 m, h = 1.9 m. The tank is filled with a fluid of density 867 kg/m³ to a depth of c = 1 m. Assume that the acceleration due to gravity is g = 9.81 m/s² h Find the force exerted on one of the triangular ends by the fluid. Round your answer to at least 3 sig figs. Force Number N Warrow_forwardA lamina occupies the part of the disk x2 + y2 ≤ 16 in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis. (x, y) =arrow_forward
- A lamina occupies the region inside the circle x² + y² = 18y but outside the circle x² + y² = 81. Find the center of mass if the density at any point is inversely proportional to its distance from the origin. (x, y) = › = ([arrow_forwardA trough whose cross-section is a trapezoid, measures 6 meters across the bottom and 8 meters across the top, and is 3 meters deep. If the trough is filled with a liquid of mass density p, what is the force due to hydrostatic pressure on one end of the trough? Write your answer in terms of p.arrow_forwardAn inverted truncated pyramid-shaped tank with square cross section shown in the figure below is 8 m tall with 64 m² cross sectional area at the top and 16 m? cross sectional area at the bottom. The tank is full of oil of density p = 100 kg/m³. Find the work required to pump the oil in the tank 1 m above the top of the tank. (Note that the acceleration due to gravity is g = 9.8 m/s²). Include units in your answer. 8marrow_forward
- The 0.50 lb ball is shot from the spring device shown. The spring has a stiffness k = 10 lb/in. and the four cords C and plate P keep the spring compressed 2 in. when no load is on the plate. The plate is pushed back 3 in. from its initial position. (Eigure 1) If it is then released from rest, determine the speed of the ball when it travels 23 in. up the smooth plane. Express your answer to three significant figure and include the appropriate units. HA Value ft/s v = 30arrow_forwardA vertical dam has a semicircular 4 m long gate as shown in the figure below. Find the hydrostatic force on the gate. The density of water is 1000 kg/m³ and acceleration of gravity is 9.81 m/s². dam 2 m gate Water level 4 m 12 marrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY