
Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.4, Problem 66P
To determine
Find the moment of inertia for the shaded area about the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Example-1:
l
D
A uniform rotor of length 0.6 m and diameter 0.4 m is made of steel (density 7810 kg/m³)
is supported by identical short bearings of stiffness 1 MN/m in the horizontal and vertical
directions. If the distance between the bearings is 0.7 m, determine the natural frequencies
and plot whirl speed map.
Solution:
B
find the laplace transform for the
flowing function
2(1-e)
Ans. F(s)=-
S
12)
k
0
Ans. F(s)=
k
s(1+e)
0 a
2a 3a 4a
13)
2+
Ans. F(s)=
1
s(1+e")
3
14) f(t)=1, 0
Find the solution of the following Differential Equations
Using Laplace Transforms
1) 4y+2y=0.
y(0)=2.
y'(0)=0.
2) y+w²y=0,
(0)=A,
y'(0)=B.
3) +2y-8y 0.
y(0)=1.
y'(0)-8.
4)-2-3y=0,
y(0)=1.
y'(0)=7.
5) y-ky'=0,
y(0)=2,
y'(0)=k.
6) y+ky'-2k²y=0,
y(0)=2,
y'(0) = 2k.
7) '+4y=0,
y(0)=2.8
8) y+y=17 sin(21),
y(0)=-1.
9) y-y-6y=0,
y(0)=6,
y'(0)=13.
10) y=0.
y(0)=4,
y' (0)=0.
11) -4y+4y-0,
y(0)=2.1.
y'(0)=3.9
12) y+2y'+2y=0,
y(0)=1,
y'(0)=-3.
13) +7y+12y=21e".
y(0)=3.5.
y'(0)=-10.
14) "+9y=10e".
y(0)=0,
y'(0)=0.
15) +3y+2.25y=91' +64.
y(0)=1.
y'(0) = 31.5
16)
-6y+5y-29 cos(2t).
y(0)=3.2,
y'(0)=6.2
17) y+2y+2y=0,
y(0)=0.
y'(0)=1.
18) y+2y+17y=0,
y(0)=0.
y'(0)=12.
19) y"-4y+5y=0,
y(0)=1,
y'(0)=2.
20) 9y-6y+y=0,
(0)-3,
y'(0)=1.
21) -2y+10y=0,
y(0)=3,
y'(0)=3.
22) 4y-4y+37y=0,
y(0)=3.
y'(0)=1.5
23) 4y-8y+5y=0,
y(0)=0,
y'(0)=1.
24)
++1.25y-0,
y(0)=1,
y'(0)=-0.5
25) y 2 cos(r).
y(0)=2.
y'(0) = 0.
26)
-4y+3y-0,
y(0)=3,
y(0) 7.
27) y+2y+y=e
y(0)=0.
y'(0)=0.
28) y+2y-3y=10sinh(27),
y(0)=0.
y'(0)=4.
29)…
Chapter 6 Solutions
Statics and Mechanics of Materials (5th Edition)
Ch. 6.1 - In each case, use the element shown and specify...Ch. 6.1 - Prob. 1FPCh. 6.1 - Determine the centroid (x,y) of the area. Prob....Ch. 6.1 - Determine the centroid y of the area. Prob. F63Ch. 6.1 - Locate the center of gravity x of the straight rod...Ch. 6.1 - Prob. 5FPCh. 6.1 - Locate the centroid z of the homogeneous solid...Ch. 6.1 - Locate the centroid x of the area. Prob. 61Ch. 6.1 - Locate the centroid of the area. Prob. 62Ch. 6.1 - Locate the centroid x of the area. Probs. 63/4
Ch. 6.1 - Locate the centroid y of the area. Probs. 63/4Ch. 6.1 - Locate the centroid x of the area. Probs. 65/6Ch. 6.1 - Locate the centroid y of the area. Probs. 65/6Ch. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Locate the centroid x of the area. Solve the...Ch. 6.1 - Prob. 10PCh. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Locate the centroid y of the area. Probs. 612/13Ch. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Locate the centroid x of the area. Probs. 617/18Ch. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Locate the centroid x of the area. Probs. 620/21Ch. 6.1 - Locate the centroid y of the area. Probs. 620/21Ch. 6.1 - Locate the centroid x of the area. Probs. 622/23Ch. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - The steel plate is 0.3 m thick and has a density...Ch. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.1 - Prob. 31PCh. 6.1 - Prob. 32PCh. 6.1 - Prob. 33PCh. 6.1 - Locate the centroid z of the volume. Prob. 634Ch. 6.1 - Prob. 35PCh. 6.2 - Locate the centroid (x,y,z) of the wire bent in...Ch. 6.2 - Locate the centroid y of the beams cross-sectional...Ch. 6.2 - Locate the centroid y of the beams cross-sectional...Ch. 6.2 - Prob. 10FPCh. 6.2 - Prob. 11FPCh. 6.2 - Prob. 12FPCh. 6.2 - Locate the centroid (x,y) of the area. Prob. 636Ch. 6.2 - Locate the centroid y for the beams...Ch. 6.2 - Locate the centroid y of the beam having the...Ch. 6.2 - Locate the centroid (x,y) of the area. Prob. 639Ch. 6.2 - Locate the centroid y of the beams cross-sectional...Ch. 6.2 - Locate the centroid (x,y) of the area. Prob. 641Ch. 6.2 - Locate the centroid (x,y) of the area. Prob. 642Ch. 6.2 - Prob. 43PCh. 6.2 - Locate the centroid y of the cross-sectional area...Ch. 6.2 - Prob. 45PCh. 6.2 - Prob. 46PCh. 6.2 - Prob. 47PCh. 6.2 - Prob. 48PCh. 6.2 - Prob. 49PCh. 6.2 - Prob. 50PCh. 6.2 - Prob. 51PCh. 6.2 - Locate the center of gravity z of the assembly....Ch. 6.2 - Major floor loadings in a shop are caused by the...Ch. 6.2 - The assembly consists of a 20-in. wooden dowel rod...Ch. 6.2 - The composite plate is made from both steel (A)...Ch. 6.4 - Determine the moment of inertia of the area about...Ch. 6.4 - Prob. 14FPCh. 6.4 - Prob. 15FPCh. 6.4 - Determine the moment of inertia of the area about...Ch. 6.4 - Prob. 56PCh. 6.4 - Prob. 57PCh. 6.4 - Prob. 58PCh. 6.4 - Prob. 59PCh. 6.4 - Determine the moment of inertia for the area about...Ch. 6.4 - Determine the moment of inertia for the area about...Ch. 6.4 - Prob. 62PCh. 6.4 - Prob. 63PCh. 6.4 - Prob. 64PCh. 6.4 - Prob. 65PCh. 6.4 - Prob. 66PCh. 6.4 - Prob. 67PCh. 6.4 - Prob. 68PCh. 6.4 - Prob. 69PCh. 6.4 - Prob. 70PCh. 6.4 - Prob. 71PCh. 6.4 - Prob. 72PCh. 6.4 - Prob. 73PCh. 6.4 - Prob. 74PCh. 6.4 - Prob. 75PCh. 6.4 - Prob. 76PCh. 6.4 - Determine the moment of inertia for the area about...Ch. 6.4 - Determine the moment of inertia for the area about...Ch. 6.4 - Prob. 79PCh. 6.5 - Determine the moment of inertia of the...Ch. 6.5 - Determine the moment of inertia of the...Ch. 6.5 - Prob. 19FPCh. 6.5 - Determine the moment of inertia of the...Ch. 6.5 - Determine the moment of inertia of the composite...Ch. 6.5 - Determine the moment of inertia of the composite...Ch. 6.5 - Prob. 82PCh. 6.5 - Determine the location y of the centroid of the...Ch. 6.5 - Determine y, which locates the centroidal axis x...Ch. 6.5 - Prob. 85PCh. 6.5 - Prob. 86PCh. 6.5 - Determine the moment of inertia Ix of the area...Ch. 6.5 - Determine the moment of inertia Ix of the area...Ch. 6.5 - Determine the moment of inertia of the...Ch. 6.5 - Determine y, which locates the centroidal axis x...Ch. 6.5 - Determine the moment of inertia of the...Ch. 6.5 - Determine the moment of inertia of the...Ch. 6 - Locate the centroid x of the area.Ch. 6 - Locate the centroid y of the area.Ch. 6 - Locate the centroid of the rod.Ch. 6 - Prob. 4RPCh. 6 - Determine the moment of inertia for the area about...Ch. 6 - Prob. 6RPCh. 6 - Determine the area moment of inertia of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Auto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardThe 120 kg wheel has a radius of gyration of 0.7 m. A force P with a magnitude of 50 N is applied at the edge of the wheel as seen in the diagram. The coefficient of static friction is 0.3, and the coefficient of kinetic friction is 0.25. Find the acceleration and angular acceleration of the wheel.arrow_forwardAuto Controls Using MATLAB , find the magnitude and phase plot of the compensators NO COPIED SOLUTIONSarrow_forward
- 4-81 The corner shown in Figure P4-81 is initially uniform at 300°C and then suddenly exposed to a convection environment at 50°C with h 60 W/m². °C. Assume the = 2 solid has the properties of fireclay brick. Examine nodes 1, 2, 3, 4, and 5 and deter- mine the maximum time increment which may be used for a transient numerical calculation. Figure P4-81 1 2 3 4 1 cm 5 6 1 cm 2 cm h, T + 2 cmarrow_forwardAuto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardAuto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward
- Please draw the section view of the following problemsarrow_forward7) Please draw the front, top and side view for the following object. Please cross this line outarrow_forwardA 10-kg box is pulled along P,Na rough surface by a force P, as shown in thefigure. The pulling force linearly increaseswith time, while the particle is motionless att = 0s untilit reaches a maximum force of100 Nattimet = 4s. If the ground has staticand kinetic friction coefficients of u, = 0.6 andHU, = 0.4 respectively, determine the velocityof the A 1 0 - kg box is pulled along P , N a rough surface by a force P , as shown in the figure. The pulling force linearly increases with time, while the particle is motionless at t = 0 s untilit reaches a maximum force of 1 0 0 Nattimet = 4 s . If the ground has static and kinetic friction coefficients of u , = 0 . 6 and HU , = 0 . 4 respectively, determine the velocity of the particle att = 4 s .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY