![Essential Calculus: Early Transcendentals; MAC 2311 Sequence| MAC 2281Sequence USF (Essential Calculus)](https://www.bartleby.com/isbn_cover_images/9781285101552/9781285101552_largeCoverImage.gif)
Essential Calculus: Early Transcendentals; MAC 2311 Sequence| MAC 2281Sequence USF (Essential Calculus)
2nd Edition
ISBN: 9781285101552
Author: James Stewart
Publisher: Cenage
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.4, Problem 15E
To determine
To evaluate: The
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Find integrating factor
Draw the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote.
Draw the asymptotes (if there are any). Then plot two points on each piece of the graph.
Chapter 6 Solutions
Essential Calculus: Early Transcendentals; MAC 2311 Sequence| MAC 2281Sequence USF (Essential Calculus)
Ch. 6.1 - Evaluate the integral using integration by parts...Ch. 6.1 - Evaluate the integral using integration by parts...Ch. 6.1 - Evaluate the integral. 3. xcos5xdxCh. 6.1 - Evaluate the integral. 4. ye0.2ydyCh. 6.1 - Evaluate the integral. 5. te3tdtCh. 6.1 - Evaluate the integral. 6. (x1)sinxdxCh. 6.1 - Evaluate the integral. 7. (x2+2x)cosxdxCh. 6.1 - Evaluate the integral. 8. t2sintdtCh. 6.1 - Evaluate the integral. ln(2x + 1) dxCh. 6.1 - Evaluate the integral. p5lnpdp
Ch. 6.1 - Prob. 11ECh. 6.1 - Evaluate the integral. sin1xdxCh. 6.1 - Evaluate the integral. 17. e2sin3dCh. 6.1 - Evaluate the integral. 18. ecos2dCh. 6.1 - Evaluate the integral. t3etdtCh. 6.1 - Evaluate the integral. 21. xe2x(1+2x)2dxCh. 6.1 - Evaluate the integral. 23. 01/2xcosxdxCh. 6.1 - Prob. 18ECh. 6.1 - Evaluate the integral. 49lnyydyCh. 6.1 - Prob. 22ECh. 6.1 - Prob. 19ECh. 6.1 - Evaluate the integral. 01tcoshtdtCh. 6.1 - Prob. 23ECh. 6.1 - Evaluate the integral. 34. 01r34+r2drCh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 31ECh. 6.1 - (a) Prove the reduction formula...Ch. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - A rocket accelerates by burning its onboard fuel,...Ch. 6.1 - Prob. 43ECh. 6.1 - Prob. 44ECh. 6.1 - Prob. 45ECh. 6.1 - (a) Use integration by parts to show that...Ch. 6.2 - Evaluate the integral. 1. sin2xcos3xdxCh. 6.2 - Evaluate the integral. 2. sin3cos4dCh. 6.2 - Evaluate the integral. 3. 0/2sin7cos5dCh. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Evaluate the integral. 11. 0/2sin2xcos2xdxCh. 6.2 - Prob. 8ECh. 6.2 - Evaluate the integral. 0cos6dCh. 6.2 - Evaluate the integral. t sin2t dtCh. 6.2 - Prob. 12ECh. 6.2 - Evaluate the integral. cos2x tan3x dxCh. 6.2 - Prob. 14ECh. 6.2 - Evaluate the integral. 1sinxcosxdxCh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Evaluate the integral. 23. tan2xdxCh. 6.2 - Evaluate the integral. 24. (tan2x+tan4x)dxCh. 6.2 - Evaluate the integral. 25. tan4xsec6xdxCh. 6.2 - Prob. 22ECh. 6.2 - Evaluate the integral. 27. tan3xsecxdxCh. 6.2 - Evaluate the integral. 28. tan5xsec3xdxCh. 6.2 - Prob. 23ECh. 6.2 - Evaluate the integral. 30. 0/4tan3tdtCh. 6.2 - Evaluate the integral. 31. tan5xdxCh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Evaluate the integral. csc4x cot6x dxCh. 6.2 - Prob. 33ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 65ECh. 6.2 - Prob. 66ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Evaluate the integral using the indicated...Ch. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Evaluate the integral. 7. 0adx(a2+x2)3/2, a 0Ch. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 61ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 62ECh. 6.2 - Prob. 63ECh. 6.2 - Prob. 64ECh. 6.2 - Prob. 59ECh. 6.2 - Evaluate the integral. 30. 0/2cost1+sin2tdtCh. 6.2 - Prob. 67ECh. 6.2 - Find the area of the region bounded by the...Ch. 6.2 - Prob. 69ECh. 6.2 - Prob. 70ECh. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Write out the form of the partial fraction...Ch. 6.3 - Evaluate the integral. 7. x4x1dxCh. 6.3 - Evaluate the integral. 8. 3t2t+1dtCh. 6.3 - Evaluate the integral. 9. 5x+1(2x+1)(x1)dxCh. 6.3 - Evaluate the integral. 10. y(y+4)(2y1)dyCh. 6.3 - Evaluate the integral. 11. 0122x2+3x+1dxCh. 6.3 - Evaluate the integral. 12. 01x4x25x+6dxCh. 6.3 - 41550-7.4-13E
7–38. Evaluate the integral.
13.
Ch. 6.3 - Evaluate the integral. 14. 1(x+a)(x+b)dxCh. 6.3 - Prob. 15ECh. 6.3 - Evaluate the integral. 01x34x10x2x6dxCh. 6.3 - Prob. 17ECh. 6.3 - Evaluate the integral. x2+2x1x3xdxCh. 6.3 - Evaluate the integral. x2+2x1x3xdxCh. 6.3 - Evaluate the integral. x25x+16(2x+1)(x2)2dxCh. 6.3 - Evaluate the integral. x3+4x2+4dxCh. 6.3 - Evaluate the integral. x22x1(x1)2(x2+1)dxCh. 6.3 - Evaluate the integral. 23. 10(x1)(x2+9)dxCh. 6.3 - Evaluate the integral. 24. x2x+6x3+3xdxCh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 32ECh. 6.3 - Make a substitution to express the integrand as a...Ch. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Make a substitution to express the integrand as a...Ch. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - One method of slowing the growth of an insect...Ch. 6.3 - 41550-7.4-68E
68. Factor x4 + 1 as a difference of...Ch. 6.3 - Suppose that F, G, and Q are polynomials and...Ch. 6.3 - If f is a quadratic function such that f(0) = 1...Ch. 6.3 - Prob. 47ECh. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Use the Table of Integrals on Reference Pages 610...Ch. 6.4 - Prob. 7ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.5 - Let I=04f(x)dx, where f is the function whose...Ch. 6.5 - Prob. 2ECh. 6.5 - Estimate 01cos(x2)dx using (a) the Trapezoidal...Ch. 6.5 - Prob. 4ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - Use (a) the Trapezoidal Rule, (b) the Midpoint...Ch. 6.5 - 41550-7.7-10E
7–18. Use (a) the Trapezoidal Rule,...Ch. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Prob. 14ECh. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Use (a) the Midpoint Rule and (b) Simpsons Rule to...Ch. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - 41550-7.7-21E
21. (a) Find the approximations T10,...Ch. 6.5 - How large should n be to guarantee that the...Ch. 6.5 - Find the approximations Ln, Rn, Tn, and Mn to the...Ch. 6.5 - Find the approximations Tn, Mn, and Sn. for n = 6...Ch. 6.5 - Estimate the area under the graph in the figure by...Ch. 6.5 - A radar gun was used to record the speed of a...Ch. 6.5 - The graph of the acceleration a(t) of a car...Ch. 6.5 - Water leaked from a tank at a rate of r(t) liters...Ch. 6.5 - A graph of the temperature in New York City on...Ch. 6.5 - Prob. 30ECh. 6.5 - (a) Use the Midpoint Rule and the given data to...Ch. 6.5 - The table (supplied by San Diego Gas and Electric)...Ch. 6.5 - Shown is the graph of traffic on an Internet...Ch. 6.5 - The figure shows a pendulum with length L that...Ch. 6.5 - The intensity of light with wavelength traveling...Ch. 6.5 - Prob. 38ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Show that 12(Tn+Mn)=T2n.Ch. 6.5 - Show that 13Tn+23Mn=S2n.Ch. 6.6 - Explain why each of the following integrals is...Ch. 6.6 - Which of the following integrals are improper?...Ch. 6.6 - 41550-7.8-3E
3. Find the area under the curve y =...Ch. 6.6 - Prob. 4ECh. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - 41550-7.8-29E
5-40 Determine whether each integral...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - Sketch the region and find its area (if the area...Ch. 6.6 - (a) If g(x) = (sin2x)/x2, use your calculator or...Ch. 6.6 - (a) If g(x)=1/(x1), use your calculator or...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - Determine whether each integral is convergent or...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - 41550-7.8-53E
49–54 Use the Comparison Theorem to...Ch. 6.6 - Use the Comparison Theorem to determine whether...Ch. 6.6 - 41550-7.8-55E
55. The integral
is improper for...Ch. 6.6 - Find the values of p for which the integral...Ch. 6.6 - Find the values of p for which the integral...Ch. 6.6 - 41550-7.8-60E
60. (a) Evaluate the integral for n...Ch. 6.6 - 41550-7.8-61E
61. (a) Show that is divergent.
(b)...Ch. 6.6 - 41550-7.8-62E
62. The average speed of molecules...Ch. 6.6 - Astronomers use a technique called stellar...Ch. 6.6 - 41550-7.8-67E
67. A manufacturer of lightbulbs...Ch. 6.6 - As we saw in Section 3.4, a radioactive substance...Ch. 6.6 - Determine how large the number a has to be so that...Ch. 6.6 - Estimate the numerical value of 0ex2dx by writing...Ch. 6.6 - 41550-7.8-76E
76. If is convergent and a and b...Ch. 6.6 - Show that 0x2ex2dx=120ex2dx.Ch. 6.6 - 41550-7.8-78E
78. Show that by interpreting the...Ch. 6.6 - Find the value of the constant C for which the...Ch. 6.6 - Find the value of the constant C for which the...Ch. 6.6 - Suppose f is continuous on [0, ) and limxf(x) = 1....Ch. 6.6 - Show that if a 1 and b a + 1, then the...Ch. 6 - Prob. 1RCCCh. 6 - How do you evaluate sinmxcosnxdx if m is odd? What...Ch. 6 - Prob. 3RCCCh. 6 - Prob. 4RCCCh. 6 - Prob. 5RCCCh. 6 - Prob. 6RCCCh. 6 - Prob. 7RCCCh. 6 - Prob. 8RCCCh. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - Prob. 3RQCh. 6 - Prob. 4RQCh. 6 - Prob. 5RQCh. 6 - Prob. 6RQCh. 6 - Prob. 7RQCh. 6 - Prob. 8RQCh. 6 - Prob. 9RQCh. 6 - 41550-7-10RQ
Determine whether the statement is...Ch. 6 - 41550-7-11RQ
Determine whether the statement is...Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Determine whether the statement is true or false....Ch. 6 - Evaluate the integral. 1. 12(x+1)2xdxCh. 6 - Evaluate the integral. 2. 12x(x+1)2dxCh. 6 - Evaluate the integral. 0/2sinecosdCh. 6 - 41550-7-4RE
1–40 Evaluate the integral.
4.
Ch. 6 - Evaluate the integral. 5. dt2t2+3t+1Ch. 6 - Prob. 6RECh. 6 - Prob. 15RECh. 6 - Prob. 8RECh. 6 - Prob. 7RECh. 6 - Evaluate the integral. 10. 01arctanx1+x2dxCh. 6 - Prob. 11RECh. 6 - Prob. 12RECh. 6 - Prob. 13RECh. 6 - Prob. 14RECh. 6 - Evaluate the integral. 14x3/2lnxdxCh. 6 - Evaluate the integral. 16. sec6tan2dCh. 6 - Prob. 17RECh. 6 - Prob. 18RECh. 6 - Prob. 19RECh. 6 - Prob. 26RECh. 6 - Prob. 21RECh. 6 - Prob. 22RECh. 6 - Prob. 23RECh. 6 - Evaluate the integral. 24. excosxdxCh. 6 - Evaluate the integral. 25. 3x3x2+6x4(x2+1)(x2+2)dxCh. 6 - Prob. 20RECh. 6 - Prob. 27RECh. 6 - Prob. 28RECh. 6 - Prob. 29RECh. 6 - Prob. 30RECh. 6 - Prob. 31RECh. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Prob. 34RECh. 6 - Prob. 35RECh. 6 - Prob. 36RECh. 6 - Prob. 37RECh. 6 - Prob. 38RECh. 6 - Prob. 39RECh. 6 - Prob. 40RECh. 6 - Prob. 41RECh. 6 - Prob. 42RECh. 6 - Evaluate the integral or show that it is...Ch. 6 - Prob. 44RECh. 6 - Prob. 45RECh. 6 - Prob. 46RECh. 6 - Prob. 47RECh. 6 - Prob. 48RECh. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Prob. 51RECh. 6 - Prob. 52RECh. 6 - Prob. 53RECh. 6 - Prob. 54RECh. 6 - Prob. 55RECh. 6 - Prob. 56RECh. 6 - Prob. 57RECh. 6 - Prob. 58RECh. 6 - Prob. 59RECh. 6 - Use Simpsons Rule with n = 6 to estimate the area...Ch. 6 - The speedometer reading (v) on a car was observed...Ch. 6 - Prob. 62RECh. 6 - Prob. 63RECh. 6 - Prob. 64RECh. 6 - Prob. 65RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Cancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (c) What is the maximum number of nonreal zeros that R (x) can have? ☐arrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (b) What is the maximum number of real zeros that R (x) can have? ☐arrow_forward
- i need help please dont use chat gptarrow_forward3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forward
- 2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forwardA driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.arrow_forwardTopic 2 Evaluate S x dx, using u-substitution. Then find the integral using 1-x2 trigonometric substitution. Discuss the results! Topic 3 Explain what an elementary anti-derivative is. Then consider the following ex integrals: fed dx x 1 Sdx In x Joseph Liouville proved that the first integral does not have an elementary anti- derivative Use this fact to prove that the second integral does not have an elementary anti-derivative. (hint: use an appropriate u-substitution!)arrow_forward
- 1. Given the vector field F(x, y, z) = -xi, verify the relation 1 V.F(0,0,0) = lim 0+ volume inside Se ff F• Nds SE where SE is the surface enclosing a cube centred at the origin and having edges of length 2€. Then, determine if the origin is sink or source.arrow_forward4 3 2 -5 4-3 -2 -1 1 2 3 4 5 12 23 -4 The function graphed above is: Increasing on the interval(s) Decreasing on the interval(s)arrow_forwardQuestion 4 The plot below represents the function f(x) 8 7 3 pts O -4-3-2-1 6 5 4 3 2 + 1 2 3 5 -2+ Evaluate f(3) f(3) = Solve f(x) = 3 x= Question 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337111348/9781337111348_smallCoverImage.gif)
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY