Concept explainers
All of the following exercises can be done with a graphing calculator if your instructor so directs. The calculator can also be used to check your work.
Population. The data in the following table give the population of Detroit since 1970 (see Exercise 18 section R.6)
Number of years, x, since 1970 | Population (in millions) |
0 | 1.5 |
10 | 1.2 |
20 | 1 |
30 | 0.95 |
40 | 0.71 |
a. Find the exponential regression curve,
b. Use the regression curve to estimate the population of Detroit in 2020 and 2025.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Calculus and Its Applications (11th Edition)
Additional Math Textbook Solutions
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
Precalculus Enhanced with Graphing Utilities (7th Edition)
Precalculus (10th Edition)
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Calculus & Its Applications (14th Edition)
Glencoe Math Accelerated, Student Edition
- Life Expectancy The following table shows the average life expectancy, in years, of a child born in the given year42 Life expectancy 2005 77.6 2007 78.1 2009 78.5 2011 78.7 2013 78.8 a. Find the equation of the regression line, and explain the meaning of its slope. b. Plot the data points and the regression line. c. Explain in practical terms the meaning of the slope of the regression line. d. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 2019? e. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 1580?2300arrow_forwardCable TV The following table shows the number C. in millions, of basic subscribers to cable TV in the indicated year These data are from the Statistical Abstract of the United States. Year 1975 1980 1985 1990 1995 2000 C 9.8 17.5 35.4 50.5 60.6 60.6 a. Use regression to find a logistic model for these data. b. By what annual percentage would you expect the number of cable subscribers to grow in the absence of limiting factors? c. The estimated number of subscribers in 2005 was 65.3million. What light does this shed on the model you found in part a?arrow_forwardDemand for Candy Bars In this problem you will determine a linear demand equation that describes the demand for candy bars in your class. Survey your classmates to determine what price they would be willing to pay for a candy bar. Your survey form might look like the sample to the left. a Make a table of the number of respondents who answered yes at each price level. b Make a scatter plot of your data. c Find and graph the regression line y=mp+b, which gives the number of respondents y who would buy a candy bar if the price were p cents. This is the demand equation. Why is the slope m negative? d What is the p-intercept of the demand equation? What does this intercept tell you about pricing candy bars? Would you buy a candy bar from the vending machine in the hallway if the price is as indicated. Price Yes or No 50 75 1.00 1.25 1.50 1.75 2.00arrow_forward
- A regression was run to determine whether there is arelationship between the diameter of a tree (x, in inches) and the tree’s age (y, in years). Theresults of the regression are given below. Use this topredict the age of a tree with diameter 10 inches. y=ax+ba=6.301b=1.044r=0.970arrow_forwardUsing your graphing calculator, make a scatter plot of the data from the table. Then graph your model from Question 2 along with the data. How well does your model fit the data? What could you do to try to improve your model?arrow_forwardWeight Versus Height The following data show the height h, in inches, and weight w, in pounds, of an average adult male. h 61 62 66 68 70 72 74 75 w 131 133 143 149 155 162 170 175 a Make a power model for weight versus height. b According to the model from part a, what percentage increase in weight can be expected if height is increased by 10?arrow_forward
- XYZ Corporation Stock Prices The following table shows the average stock price, in dollars, of XYZ Corporation in the given month. Month Stock price January 2011 43.71 February 2011 44.22 March 2011 44.44 April 2011 45.17 May 2011 45.97 a. Find the equation of the regression line. Round the regression coefficients to three decimal places. b. Plot the data points and the regression line. c. Explain in practical terms the meaning of the slope of the regression line. d. Based on the trend of the regression line, what do you predict the stock price to be in January 2012? January 2013?arrow_forwardSpecial Rounding Instructions For this exercise set, round all regression parameters to three decimal places, but round all other answers to two decimal places unless otherwise indicated. Cell phones The following table shows the number, in millions, of cell phone subscribers in the United States at the end of the given year. Year Subscribersmillions 2010 296.3 2011 316.0 2012 326.5 2013 335.6 2014 355.4 a.Plot the data points. b.Use exponential regression to construct an exponential model for the subscriber data. c.Add the graph of the exponential model to the plot in part a. d.What was the yearly percentage growth rate from the end of 2010 through the end of 2014 for cell phone subscribership? e.In 2014, an executive had a plan that could make money for the company, provided that there would be at least 380million cell phone subscribers by the end of 2016. Solely on the basis of an exponential model for the data in the table, would it be reasonable for the executive to implement the plan?arrow_forwardWorld Population The following table shows world population N, in billions, in the given year. Year 1950 1960 1970 1980 1990 2000 2010 N 2.56 3.04 3.71 4.45 5.29 6.09 6.85 a. Use regression to find a logistic model for world population. b. What r value do these data yield for humans on planet Earth? c. According to the logistic model using these data, what is the carrying capacity of planet Earth for humans? d. According to this model, when will world population reach 90 of carrying capacity? Round to the nearest year. Note: This represents a rather naive analysis of world population.arrow_forward
- Special Rounding Instructions For this exercise set, round all regression parameters to three decimal places, but round all other answers to two decimal places unless otherwise indicated. Household IncomeThe following table shows the median income, in thousands of dollars, of American families for 2003 through 2008. Year Incomethousands of dollars 2003 52.68 2004 54.06 2005 56.19 2006 58.41 2007 61.36 2008 61.52 a.Plot the data. b.Use exponential regression to construct an exponential model for the income data. c.What was the yearly percentage growth rate in median family income during this period? d.From 2003 through 2008, inflation was about 3 per year. Did median family income keep pace with inflation during this period?arrow_forwardWhat is interpolation when using a linear model?arrow_forwardTEST YOUR UNDERSTANDING The following table shows the average price P, in dollars, of a gallon of regular gas t years after 2000. t = year since 2000 0 2 4 7 8 P = price in dollars 1.51 1.36 1.88 2.80 3.27 Find the equation of the regression line for P as a function of t. What price does your model give for gas in 2009? Compute your answer with the actual value of 2.35.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning