Let
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Bundle: Elementary Linear Algebra, Loose-leaf Version, 8th + MindTap Math, 1 term (6 months) Printed Access Card
- Let T be a linear transformation T such that T(v)=kv for v in Rn. Find the standard matrix for T.arrow_forwardFind the kernel of the linear transformation T:R4R4, T(x1,x2,x3,x4)=(x1x2,x2x1,0,x3+x4).arrow_forwardLet T be a linear transformation from R2 into R2 such that T(1,0)=(1,1) and T(0,1)=(1,1). Find T(1,4) and T(2,1).arrow_forward
- Let T:P2P4 be the linear transformation T(p)=x2p. Find the matrix for T relative to the bases B={1,x,x2} and B={1,x,x2,x3,x4}.arrow_forwardFind a basis for R2 that includes the vector (2,2).arrow_forwardLet T:R3R3 be the linear transformation that projects u onto v=(2,1,1). (a) Find the rank and nullity of T. (b) Find a basis for the kernel of T.arrow_forward
- Let S={v1,v2,v3} be a set of linearly independent vectors in R3. Find a linear transformation T from R3 into R3 such that the set {T(v1),T(v2),T(v3)} is linearly dependent.arrow_forwardLet T be a linear transformation from R3 into R such that T(1,1,1)=1, T(1,1,0)=2 and T(1,0,0)=3. Find T(0,1,1)arrow_forwardShow that T from Exercise 71 is represented by the matrix A=[12121212]. Proof Let T be the function that maps R2 into R2 such that T(u)=projvu, where v=(1,1) (a) Find T(x,y) (b) Find T(5,0) (c) Prove that T is a linear transformation from R2 into R2.arrow_forward
- Let T:R4R2 be the linear transformation defined by T(v)=Av, where A=[10100101]. Find a basis for a the kernel of T and b the range of T. c Determine the rank and nullity of T.arrow_forwardIn Exercises 1 and 2, determine whether the function is a linear transformation. T:M2,2R, T(A)=|A+AT|arrow_forwarda Let T=[3001]. What effect does T have on the gray square in Table 1? b Let S=[1002]. What effect does S have on the gray square in Table 1? c Apply S to the vertices of the square, and then apply T to the result. What is the effect of the combined transformation? d Find the product matrix W=TS. e Apply the transformation W to the square. Compare to you final result in part c. What do you notice?arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning