![Pearson eText for Calculus for the Life Sciences -- Instant Access (Pearson+)](https://www.bartleby.com/isbn_cover_images/9780137553457/9780137553457_largeCoverImage.gif)
Pearson eText for Calculus for the Life Sciences -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137553457
Author: Raymond Greenwell, Nathan Ritchey
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.3, Problem 43E
To determine
(a)
To find:
The
To determine
(b)
To find:
The
To determine
(c)
The relationship between
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
The graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 1.
Select all that apply:
☐ f(x) is not continuous at x = 1 because it is not defined at x = 1.
☐ f(x) is not continuous at x = 1 because lim f(x) does not exist.
x+1
☐ f(x) is not continuous at x = 1 because lim f(x) ‡ f(1).
x+→1
☐ f(x) is continuous at x = 1.
a is done please show b
A homeware company has been approached to manufacture a cake tin in the shape
of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the
games launch. The base of the cake tin has a characteristic dimension / and is
illustrated in Figure 1 below, you should assume the top and bottom of the shape
can be represented by semi-circles. The vertical sides of the cake tin have a height of
h. As the company's resident mathematician, you need to find the values of r and h
that minimise the internal surface area of the cake tin given that the volume of the
tin is Vfixed-
2r
Figure 1 - Plan view of the "ghost" cake tin base.
(a) Show that the Volume (V) of the cake tin as a function of r and his
2(+1)²h
V = 2
Chapter 6 Solutions
Pearson eText for Calculus for the Life Sciences -- Instant Access (Pearson+)
Ch. 6.1 - YOUR TURN Find the absolute extrema of the...Ch. 6.1 - Prob. 2YTCh. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - Prob. 3ECh. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - EXERCISES Find the locations of any absolute...Ch. 6.1 - Prob. 8E
Ch. 6.1 - EXERCISES What is the difference between a...Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Find the absolute extrema if they exist, as well...Ch. 6.1 - Prob. 30ECh. 6.1 - EXERCISES Graph each function on the indicated...Ch. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - EXERCISES Find the absolute extrema if they exist,...Ch. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.1 - Prob. 41ECh. 6.1 - EXERCISES Let f(x)=e2x, For x0, let P(x) be the...Ch. 6.1 - Prob. 43ECh. 6.1 - EXERCISES Salmon Spawning The number of salmon...Ch. 6.1 - Prob. 45ECh. 6.1 - EXERCISES Fungal growth Because of the time that...Ch. 6.1 - EXERCISES Dentin Growth The growth of dentin in...Ch. 6.1 - Prob. 48ECh. 6.1 - Prob. 49ECh. 6.1 - EXERCISES Satisfaction Suppose some substance such...Ch. 6.1 - EXERCISES Area A piece of wire 12 ft long is cut...Ch. 6.1 - EXERCISES Area A piece of wire 12 ft long is cut...Ch. 6.1 - EXERCISES Area A piece of wire 12 ft long is cut...Ch. 6.1 - Prob. 54ECh. 6.1 - Prob. 56ECh. 6.1 - Prob. 57ECh. 6.1 - Prob. 58ECh. 6.2 - Find two nonnegative number x and y for which...Ch. 6.2 - YOUR TURN Suppose the animal in Example 2 can run...Ch. 6.2 - YOUR TURN Repeat Example 3 using an 8m by 8m piece...Ch. 6.2 - YOUR TURN Repeat Example 4 if the volume is to be...Ch. 6.2 - Prob. 1ECh. 6.2 - EXERCISES In Exercises 1-4, use the steps shown in...Ch. 6.2 - EXERCISES In Exercises 1-4, use the steps shown in...Ch. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - EXERCISES Disease Another disease hits the...Ch. 6.2 - EXERCISES Maximum Sustainable Harvest Find the...Ch. 6.2 - EXERCISES Maximum Sustainable Harvest Find the...Ch. 6.2 - EXERCISES Pollution A lake polluted by bacteria is...Ch. 6.2 - Prob. 10ECh. 6.2 - Maximum Sustainable Harvest In Exercise 11 and 12,...Ch. 6.2 - Maximum Sustainable Harvest In Exercise 11 and 12,...Ch. 6.2 - Prob. 13ECh. 6.2 - Pigeon Flight Repeat Exercise 13, but assume a...Ch. 6.2 - Applications of Extrema Bird Migration Suppose a...Ch. 6.2 - Prob. 17ECh. 6.2 - Prob. 19ECh. 6.2 - Applications of Extrema OTHER APPLICATIONS Area A...Ch. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - OTHER APPLICATIONS Cost with Fixed Area A fence...Ch. 6.2 - OTHER APPLICATIONS Packaging Design An exercise...Ch. 6.2 - OTHER APPLICATIONS Packaging Design A company...Ch. 6.2 - OTHER APPLICATIONS Container Design An open box...Ch. 6.2 - OTHER APPLICATIONS Container Design Consider the...Ch. 6.2 - OTHER APPLICATIONS Packaging Cost A closed box...Ch. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Packaging Design A cylindrical box will be tied up...Ch. 6.2 - Cost A company wishes to run a utility cable from...Ch. 6.2 - Cost Repeat Exercise 38, but make point A 7 miles...Ch. 6.2 - Prob. 40ECh. 6.2 - Travel Time Repeat Example 40, but assume the...Ch. 6.2 - Postal Regulations The U.S. postal service...Ch. 6.2 - Ladder A thief tries to enter a building by...Ch. 6.2 - Ladder A janitor in a hospital needs to carry a...Ch. 6.3 - Find dydx if x2+y2=xy.Ch. 6.3 - Prob. 2YTCh. 6.3 - Your Turn The graph of y4x4y2+x2=0 is called the...Ch. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Find dydxby implicit differentiation for the...Ch. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Find dy/dxby implicit differentiation for the...Ch. 6.3 - Find dy/dxby implicit differentiation for the...Ch. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - EXERCISES Find dy/dxby implicit differentiation...Ch. 6.3 - Find dy/dxby implicit differentiation for the...Ch. 6.3 - Prob. 16ECh. 6.3 - EXERCISES Find dy/dxby implicit differentiation...Ch. 6.3 - Prob. 18ECh. 6.3 - EXERCISES Find the equation of the tangent line at...Ch. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Find the equation of the tangent line at the given...Ch. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Information on curve in Exercise 37-40, as well as...Ch. 6.3 - Information on curve in Exercise 37-40, as well as...Ch. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Biochemical Reaction A simple biochemical reaction...Ch. 6.3 - Species The relationship between the number of...Ch. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.4 - YOUR TURN Suppose x are y are both functions of t...Ch. 6.4 - YOUR TURN A 25ft ladder is placed against a...Ch. 6.4 - Prob. 3YTCh. 6.4 - Repeat Example 5 using the daily demand function...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Assume x and y are functions of t. Evaluate...Ch. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Assume xand yare functions of t.Evaluate dy/dtfor...Ch. 6.4 - Assume xand yare functions of t.Evaluate dy/dtfor...Ch. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - LIFE SCIENCE APPLICATIONS Brain Mass The brain...Ch. 6.4 - Prob. 14ECh. 6.4 - LIFE SCIENCE APPLICATIONS Metabolic Rate The...Ch. 6.4 - LIFE SCIENCE APPLICATIONS Metabolic Rate The...Ch. 6.4 - Lizards The energy cost of horizontal locomotion...Ch. 6.4 - Prob. 18ECh. 6.4 - Crime Rate Sociologists have found that crime...Ch. 6.4 - Memorization Skills Under certain conditions, a...Ch. 6.4 - Sliding Ladder A 17-ft ladder is placed against a...Ch. 6.4 - Distance a. One car leaves a given point and...Ch. 6.4 - AreaA rock is thrown into a still pond. The...Ch. 6.4 - A spherical snowball is placed in the sun. The sun...Ch. 6.4 - Ice CubeAn ice cube that is 3 cm on each side is...Ch. 6.4 - Prob. 26ECh. 6.4 - LIFE SCIENCE APPLICATION Shadow Length A man 6 ft...Ch. 6.4 - LIFE SCIENCE APPLICATION Water Level A trough has...Ch. 6.4 - Prob. 29ECh. 6.4 - LIFE SCIENCE APPLICATION Kite Flying Christine...Ch. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Rotating Lighthouse The beacon on a lighthouse 50m...Ch. 6.4 - Rotating Camera A television camera on a tripod...Ch. 6.5 - YOUR TURN Find dy if y=300x23,x=8, and dx=0.05.Ch. 6.5 - Prob. 2YTCh. 6.5 - YOUR TURN Repeat Example 4 for r=1.25mm with a...Ch. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - For Exercises 1-8, find dyfor the given values of...Ch. 6.5 - Differentials: Linear Approximation For Exercises...Ch. 6.5 - Differentials: Linear Approximation For Exercises...Ch. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Use the differential to approximate each quantity....Ch. 6.5 - Prob. 13ECh. 6.5 - Use the differential to approximate each quantity....Ch. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Use the differential to approximate each quantity....Ch. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - LIFE SCIENCE APPLICATIONS Bacteria Population The...Ch. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - LIFE SCIENCE APPLICATIONS Area of an Oil Slick An...Ch. 6.5 - LIFE SCIENCE APPLICATIONS Area of a Bacteria...Ch. 6.5 - Prob. 26ECh. 6.5 - LIFE SCIENCE APPLICATIONS Pigs Researchers have...Ch. 6.5 - Prob. 28ECh. 6.5 - OTHER APPLICATIONS Volume A spherical snowball is...Ch. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.5 - Prob. 35ECh. 6.5 - Tolerance A worker is constructing a cubical box...Ch. 6.5 - Measurement Error A cone has a known height of...Ch. 6.5 - Material Requirement A cube 4in. on an edge is...Ch. 6.5 - Material Requirement Beach balls 1ft in diameter...Ch. 6.CR - Prob. 1CRCh. 6.CR - Prob. 2CRCh. 6.CR - Prob. 3CRCh. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Determine whether each of the following statements...Ch. 6.CR - Prob. 8CRCh. 6.CR - Prob. 9CRCh. 6.CR - Prob. 10CRCh. 6.CR - Prob. 11CRCh. 6.CR - Prob. 12CRCh. 6.CR - Prob. 13CRCh. 6.CR - Prob. 14CRCh. 6.CR - Prob. 15CRCh. 6.CR - Prob. 16CRCh. 6.CR - Prob. 18CRCh. 6.CR - Prob. 19CRCh. 6.CR - Prob. 20CRCh. 6.CR - Prob. 21CRCh. 6.CR - Prob. 22CRCh. 6.CR - Prob. 23CRCh. 6.CR - Prob. 24CRCh. 6.CR - Prob. 25CRCh. 6.CR - Prob. 26CRCh. 6.CR - Prob. 27CRCh. 6.CR - Prob. 28CRCh. 6.CR - Prob. 29CRCh. 6.CR - Prob. 30CRCh. 6.CR - Prob. 31CRCh. 6.CR - Prob. 32CRCh. 6.CR - Prob. 33CRCh. 6.CR - Prob. 34CRCh. 6.CR - Prob. 35CRCh. 6.CR - Prob. 36CRCh. 6.CR - Prob. 37CRCh. 6.CR - Prob. 38CRCh. 6.CR - Prob. 39CRCh. 6.CR - Prob. 40CRCh. 6.CR - Prob. 41CRCh. 6.CR - Prob. 42CRCh. 6.CR - Prob. 43CRCh. 6.CR - Prob. 44CRCh. 6.CR - Prob. 45CRCh. 6.CR - Prob. 46CRCh. 6.CR - Prob. 47CRCh. 6.CR - Prob. 48CRCh. 6.CR - Prob. 49CRCh. 6.CR - Prob. 50CRCh. 6.CR - Prob. 53CRCh. 6.CR - Prob. 54CRCh. 6.CR - OTHER APPLICATIONS Sliding Ladder A 50-ft ladder...Ch. 6.CR - Prob. 56CRCh. 6.CR - Prob. 57CRCh. 6.CR - Prob. 58CRCh. 6.CR - Prob. 59CRCh. 6.CR - Prob. 60CRCh. 6.CR - Prob. 61CRCh. 6.CR - Prob. 62CRCh. 6.CR - Prob. 63CRCh. 6.CR - Prob. 64CRCh. 6.CR - Prob. 65CRCh. 6.CR - Prob. 66CRCh. 6.CR - Prob. 67CRCh. 6.CR - Prob. 68CRCh. 6.EA - In this application, we set up a mathematical...Ch. 6.EA - Prob. 2EACh. 6.EA - Prob. 3EACh. 6.EA - Prob. 4EACh. 6.EA - Prob. 5EACh. 6.EA - Prob. 6EA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.arrow_forwardUse a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forwardx²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardDetermine the following limit. lim 35w² +8w+4 w→∞ √49w+w³ 3 Select the correct choice below, and, if necessary, fill in the answer box to complete your choice. ○ A. lim W→∞ 35w² +8w+4 49w+w3 (Simplify your answer.) B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardCalculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forwardFind the following limit or state that it does not exist. Assume b is a fixed real number. (x-b) 40 - 3x + 3b lim x-b x-b ... Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (x-b) 40 -3x+3b A. lim x-b x-b B. The limit does not exist. (Type an exact answer.)arrow_forwardx4 -289 Consider the function f(x) = 2 X-17 Complete parts a and b below. a. Analyze lim f(x) and lim f(x), and then identify the horizontal asymptotes. x+x X--∞ lim 4 X-289 2 X∞ X-17 X - 289 lim = 2 ... X∞ X - 17 Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice. A. The function has a horizontal asymptote at y = B. The function has two horizontal asymptotes. The top asymptote is y = and the bottom asymptote is y = ☐ . C. The function has no horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. earrow_forwardExplain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningImplicit Differentiation Explained - Product Rule, Quotient & Chain Rule - Calculus; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=LGY-DjFsALc;License: Standard YouTube License, CC-BY