Mathematical Statistics with Applications
Mathematical Statistics with Applications
7th Edition
ISBN: 9781133384380
Author: Dennis Wackerly; William Mendenhall; Richard L. Scheaffer
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6.3, Problem 2E

a.

To determine

Find the density function for U1=3Y.

a.

Expert Solution
Check Mark

Answer to Problem 2E

The density function for U1=3Y is fU1(u)=u218,   3u3.

Explanation of Solution

Calculation:

From the given information, the probability density function for Y is f(y)=32y2,1y1.

The distribution function for Y is,

FY(y)=y1f(t)dt=y132t2dt=32[t33]y1=12(y31)

From the given information, the random variable U1 is defined as U1=3Y.

Consider the distribution function for U1,

FU1(u1)=P(U1u)=P(3Yu)=P(Yu3)=12[(u3)31]

Limits for the random variable U1:

The range for the random variable Y is from  ̶ 1 to 1 and U1=3Y.

For Y=  ̶ 1, the value of U1 is  ̶ 3.

For Y=1, the value of U1 is 3.

Hence, the range for the random variable U1 is from  ̶ 3 to 3.

The probability density function for U1 is,

fU1(u)=FU1(u)=ddu(12[(u3)31])=12×3(u3)2×13=u218,             3u3

Thus, the density function for U1=3Y is fU1(u)=u218,   3u3.

b.

To determine

Find the density function for U2=3Y.

b.

Expert Solution
Check Mark

Answer to Problem 2E

The density function for U2=3Y is fU2(u)=32×(3u)2,2u4.

Explanation of Solution

Calculation:

From the given information, U2=3Y.

Consider the distribution function for U2,

FU2(u)=P(U2u)=P(3Yu)=P(Yu3)=P(Y>3u)

             =1F(3u)=112[(3u)31]=12(3u)3+32

Limits for the random variable U2:

The range for the random variable Y is from  ̶ 1 to 1 and U2=3Y.

For Y=  ̶ 1, the value of U2 is 4.

For Y=1, the value of U2 is 2.

Hence, the range for the random variable U2 is from  2 to 4.

The probability density function for U2 is,

fU2(u)=FU2(u)=ddu(12(3u)3+32)=32×(3u)2,2u4

Thus, the density function for U2=3Y is fU2(u)=32×(3u)2,2u4.

c.

To determine

Find the density function for U3=Y2.

c.

Expert Solution
Check Mark

Answer to Problem 2E

The density function for U3=Y2 is fU3(u)=32u,0u1.

Explanation of Solution

Calculation:

From the given information, U3=Y2.

Consider the distribution function for U3,

FU3(u)=P(U3u)=P(Y2u)=P(uYu)=F(u)F(u)

             =12((u)31)12((u)31)=12(u)312+12(u)3+12=u32

The probability density function for U3 is,

fU3(u)=FU3(u)=ddu(u32)=32×(u12),0u1

Thus, the density function for U3=Y2 is fU3(u)=32u,0u1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Pls help asap
Solve the following LP problem using the Extreme Point Theorem: Subject to: Maximize Z-6+4y 2+y≤8 2x + y ≤10 2,y20 Solve it using the graphical method. Guidelines for preparation for the teacher's questions: Understand the basics of Linear Programming (LP) 1. Know how to formulate an LP model. 2. Be able to identify decision variables, objective functions, and constraints. Be comfortable with graphical solutions 3. Know how to plot feasible regions and find extreme points. 4. Understand how constraints affect the solution space. Understand the Extreme Point Theorem 5. Know why solutions always occur at extreme points. 6. Be able to explain how optimization changes with different constraints. Think about real-world implications 7. Consider how removing or modifying constraints affects the solution. 8. Be prepared to explain why LP problems are used in business, economics, and operations research.
ged the variance for group 1) Different groups of male stalk-eyed flies were raised on different diets: a high nutrient corn diet vs. a low nutrient cotton wool diet. Investigators wanted to see if diet quality influenced eye-stalk length. They obtained the following data: d Diet Sample Mean Eye-stalk Length Variance in Eye-stalk d size, n (mm) Length (mm²) Corn (group 1) 21 2.05 0.0558 Cotton (group 2) 24 1.54 0.0812 =205-1.54-05T a) Construct a 95% confidence interval for the difference in mean eye-stalk length between the two diets (e.g., use group 1 - group 2).

Chapter 6 Solutions

Mathematical Statistics with Applications

Ch. 6.3 - Suppose that two electronic components in the...Ch. 6.3 - Prob. 12ECh. 6.3 - If Y1 and Y2 are independent exponential random...Ch. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - A member of the Pareto family of distributions...Ch. 6.3 - Prob. 19ECh. 6.3 - Let the random variable Y possess a uniform...Ch. 6.3 - Prob. 21ECh. 6.4 - Prob. 23ECh. 6.4 - In Exercise 6.4, we considered a random variable Y...Ch. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Let Y have a uniform (0, 1) distribution. Show...Ch. 6.4 - Prob. 29ECh. 6.4 - A fluctuating electric current I may be considered...Ch. 6.4 - The joint distribution for the length of life of...Ch. 6.4 - Prob. 32ECh. 6.4 - The proportion of impurities in certain ore...Ch. 6.4 - A density function sometimes used by engineers to...Ch. 6.4 - Prob. 35ECh. 6.4 - Refer to Exercise 6.34. Let Y1 and Y2 be...Ch. 6.5 - Let Y1, Y2,, Yn be independent and identically...Ch. 6.5 - Let Y1 and Y2 be independent random variables with...Ch. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 41ECh. 6.5 - A type of elevator has a maximum weight capacity...Ch. 6.5 - Prob. 43ECh. 6.5 - Prob. 44ECh. 6.5 - The manager of a construction job needs to figure...Ch. 6.5 - Suppose that Y has a gamma distribution with =...Ch. 6.5 - A random variable Y has a gamma distribution with ...Ch. 6.5 - Prob. 48ECh. 6.5 - Let Y1 be a binomial random variable with n1...Ch. 6.5 - Let Y be a binomial random variable with n trials...Ch. 6.5 - Prob. 51ECh. 6.5 - Prob. 52ECh. 6.5 - Let Y1,Y2,,Yn be independent binomial random...Ch. 6.5 - Prob. 54ECh. 6.5 - Customers arrive at a department store checkout...Ch. 6.5 - The length of time necessary to tune up a car is...Ch. 6.5 - Prob. 57ECh. 6.5 - Prob. 58ECh. 6.5 - Prob. 59ECh. 6.5 - Prob. 60ECh. 6.5 - Prob. 61ECh. 6.5 - Prob. 62ECh. 6.6 - In Example 6.14, Y1 and Y2 were independent...Ch. 6.6 - Refer to Exercise 6.63 and Example 6.14. Suppose...Ch. 6.6 - Prob. 65ECh. 6.6 - Prob. 66ECh. 6.6 - Prob. 67ECh. 6.6 - Prob. 68ECh. 6.6 - Prob. 71ECh. 6 - Let Y1 and Y2 be independent and uniformly...Ch. 6 - As in Exercise 6.72, let Y1 and Y2 be independent...Ch. 6 - Let Y1, Y2,, Yn be independent, uniformly...Ch. 6 - Prob. 75SECh. 6 - Prob. 76SECh. 6 - Prob. 77SECh. 6 - Prob. 78SECh. 6 - Refer to Exercise 6.77. If Y1,Y2,,Yn are...Ch. 6 - Prob. 80SECh. 6 - Let Y1, Y2,, Yn be independent, exponentially...Ch. 6 - Prob. 82SECh. 6 - Prob. 83SECh. 6 - Prob. 84SECh. 6 - Let Y1 and Y2 be independent and uniformly...Ch. 6 - Prob. 86SECh. 6 - Prob. 87SECh. 6 - Prob. 88SECh. 6 - Let Y1, Y2, . . . , Yn denote a random sample from...Ch. 6 - Prob. 90SECh. 6 - Prob. 91SECh. 6 - Prob. 92SECh. 6 - Prob. 93SECh. 6 - Prob. 94SECh. 6 - Prob. 96SECh. 6 - Prob. 97SECh. 6 - Prob. 98SECh. 6 - Prob. 99SECh. 6 - The time until failure of an electronic device has...Ch. 6 - Prob. 101SECh. 6 - Prob. 103SECh. 6 - Prob. 104SECh. 6 - Prob. 105SECh. 6 - Prob. 106SECh. 6 - Prob. 107SECh. 6 - Prob. 108SECh. 6 - Prob. 109SECh. 6 - Prob. 110SECh. 6 - Prob. 111SECh. 6 - Prob. 112SECh. 6 - Prob. 113SECh. 6 - Prob. 114SECh. 6 - Prob. 115SECh. 6 - Prob. 116SE
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License