ELEMENTS OF MODERN ALGEBRA
8th Edition
ISBN: 9780357671139
Author: Gilbert
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.3, Problem 23E
To determine
To prove: The set
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Simply:(p/(x-a))-(p/(x+a))
Q1lal Let X be an arbitrary infinite set and let r the family of all subsets
F of X which do not contain a particular point x, EX and the
complements F of all finite subsets F of X show that (X.r) is a topology.
bl The nbhd system N(x) at x in a topological space X has the following
properties
NO- N(x) for any xX
N1- If N EN(x) then x€N
N2- If NEN(x), NCM then MeN(x)
N3- If NEN(x), MEN(x) then NOMEN(x)
N4- If N = N(x) then 3M = N(x) such that MCN then MeN(y) for any
уем
Show that there exist a unique topology τ on X.
Q2\a\let (X,r) be the topology space and BST show that ẞ is base for a
topology on X iff for any G open set xEG then there exist A Eẞ such
that x E ACG.
b\Let ẞ is a collection of open sets in X show that is base for a
topology on X iff for each xex the collection B, (BEB\xEB) is is a
nbhd base at x.
-
Q31 Choose only two:
al Let A be a subspace of a space X show that FCA is closed iff
F KOA, K is closed set in X.
الرياضيات
b\ Let X and Y be two topological space and f:X -…
Q1\ Let X be a topological space and let Int be the interior
operation defined on P(X) such that
1₁.Int(X) = X
12. Int (A) CA for each A = P(X)
13. Int (int (A) = Int (A) for each A = P(X)
14. Int (An B) = Int(A) n Int (B) for each A, B = P(X)
15. A is open iff Int (A) = A
Show that there exist a unique topology T on X.
Q2\ Let X be a topological space and suppose that a nbhd
base has been fixed at each x E X and A SCX show that A open
iff A contains a basic nbdh of each its point
Q3\ Let X be a topological space and and A CX show that A
closed set iff every limit point of A is in A.
A'S A
ACA
Q4\ If ẞ is a collection of open sets in X show that ẞ is a base
for a topology on X iff for each x E X then ẞx = {BE B|x E B}
is a nbhd base at x.
Q5\ If A subspace of a topological space X, if x Є A show
that V is nbhd of x in A iff V = Un A where U is nbdh of x in
X.
Chapter 6 Solutions
ELEMENTS OF MODERN ALGEBRA
Ch. 6.1 - True or False
Label each of the following...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - True or false
Label each of the following...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - True or false
Label each of the following...Ch. 6.1 - True or false
Label each of the following...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - Exercises Let I be a subset of ring R. Prove that...Ch. 6.1 - Prob. 2E
Ch. 6.1 - Prove or disprove each of the following...Ch. 6.1 - Exercises
If and are two ideals of the ring ,...Ch. 6.1 - Prob. 5ECh. 6.1 - Exercises
Find two ideals and of the ring such...Ch. 6.1 - Exercises
Let be an ideal of a ring , and let be...Ch. 6.1 - Exercises
If and are two ideals of the ring ,...Ch. 6.1 - Find the principal ideal (z) of Z such that each...Ch. 6.1 - Let I1 and I2 be ideals of the ring R. Prove that...Ch. 6.1 - Find a principal ideal (z) of such that each of...Ch. 6.1 - 12. Let be a commutative ring with unity. If...Ch. 6.1 - 13. Verify each of the following statements...Ch. 6.1 - 14. Let be an ideal in a ring with unity . Prove...Ch. 6.1 - Let I be an ideal in a ring R with unity. Prove...Ch. 6.1 - Prove that if R is a field, then R has no...Ch. 6.1 - In the ring of integers, prove that every subring...Ch. 6.1 - Let a0 in the ring of integers . Find b such that...Ch. 6.1 - 19. Let and be nonzero integers. Prove that if and...Ch. 6.1 - 20. If and are nonzero integers and is the least...Ch. 6.1 - Prove that every ideal of n is a principal ideal....Ch. 6.1 - 22. Let . Prove .
Ch. 6.1 - 23. Find all distinct principal ideals of for the...Ch. 6.1 - 24. If is a commutative ring and is a fixed...Ch. 6.1 - Given that the set S={[xy0z]|x,y,z} is a ring with...Ch. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - 28. a. Show that the set is a ring with respect to...Ch. 6.1 - 29. Let be the set of Gaussian integers . Let .
...Ch. 6.1 - a. For a fixed element a of a commutative ring R,...Ch. 6.1 - Let R be a commutative ring that does not have a...Ch. 6.1 - 32. a. Let be an ideal of the commutative ring ...Ch. 6.1 - 33. An element of a ring is called nilpotent if...Ch. 6.1 - 34. If is an ideal of prove that the set is an...Ch. 6.1 - Let R be a commutative ring with unity whose only...Ch. 6.1 - 36. Suppose that is a commutative ring with unity...Ch. 6.2 - True or false
Label each of the following...Ch. 6.2 - True or false
Label each of the following...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Each of the following rules determines a mapping...Ch. 6.2 - 2. Prove that is commutative if and only if is...Ch. 6.2 - 3. Prove that has a unity if and only if has a...Ch. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Assume that the set S={[xy0z]|x,y,z} is a ring...Ch. 6.2 - Assume that the set R={[x0y0]|x,y} is a ring with...Ch. 6.2 - 9. For any let denote in and let denote in .
a....Ch. 6.2 - Let :312 be defined by ([x]3)=4[x]12 using the...Ch. 6.2 - 11. Show that defined by is not a homomorphism.
Ch. 6.2 - 12. Consider the mapping defined by . Decide...Ch. 6.2 - Prob. 13ECh. 6.2 -
14. Let be a ring with unity . Verify that the...Ch. 6.2 - In the field of a complex numbers, show that the...Ch. 6.2 - Prob. 16ECh. 6.2 - Define :2()2(2) by ([abcd])=[[a][b][c][d]]. Prove...Ch. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - 25. Figure 6.3 gives addition and multiplication...Ch. 6.2 - Prob. 26ECh. 6.2 - 27. For each given value of find all homomorphic...Ch. 6.2 - Prob. 28ECh. 6.2 - 29. Assume that is an epimorphism from to ....Ch. 6.2 - 30. In the ring of integers, let new operations of...Ch. 6.2 - Prob. 31ECh. 6.3 - True or False
Label each of the following...Ch. 6.3 - Prob. 2TFECh. 6.3 - True or False
Label each of the following...Ch. 6.3 - True or False
Label each of the following...Ch. 6.3 - Prob. 5TFECh. 6.3 - Find the characteristic of each of the following...Ch. 6.3 - Find the characteristic of the following rings. 22...Ch. 6.3 - 3. Let be an integral domain with positive...Ch. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - 8. Prove that the characteristic of a field is...Ch. 6.3 - Let D be an integral domain with four elements,...Ch. 6.3 - Let R be a commutative ring with characteristic 2....Ch. 6.3 -
11. a. Give an example of a ring of...Ch. 6.3 - 12. Let be a commutative ring with prime...Ch. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - 15. In a commutative ring of characteristic 2,...Ch. 6.3 - A Boolean ring is a ring in which all elements x...Ch. 6.3 - 17. Suppose is a ring with positive...Ch. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Let I be the set of all elements of a ring R that...Ch. 6.3 - 21. Prove that if a ring has a finite number of...Ch. 6.3 - 22. Let be a ring with finite number of...Ch. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prove that every ordered integral domain has...Ch. 6.4 - Label each of the following statements as either...Ch. 6.4 - Prob. 2TFECh. 6.4 - According to part a of Example 3 in Section 5.1,...Ch. 6.4 - Let R be as in Exercise 1, and show that the...Ch. 6.4 - Prob. 3ECh. 6.4 - Show that the ideal is a maximal ideal of .
Ch. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Find all maximal ideals of .
Ch. 6.4 - Find all maximal ideals of 18.Ch. 6.4 - Let be the ring of Gaussian integers. Let
...Ch. 6.4 - Let R bethe ring of Gaussian integersas an...Ch. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 20ECh. 6.4 - Find all prime ideals of .
Ch. 6.4 - Find all prime ideals of .
Ch. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - . a. Let, and . Show that and are only ideals...Ch. 6.4 - 27. If is a commutative ring with unity, prove...Ch. 6.4 - If R is a finite commutative ring with unity,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- + Theorem: Let be a function from a topological space (X,T) on to a non-empty set y then is a quotient map iff vesy if f(B) is closed in X then & is >Y. ie Bclosed in bp closed in the quotient topology induced by f iff (B) is closed in x- التاريخ Acy الموضوع : Theorem:- IP & and I are topological space and fix sy is continuous او function and either open or closed then the topology Cony is the quatient topology p proof: Theorem: Lety have the quotient topology induced by map f of X onto y. The-x: then an arbirary map g:y 7 is continuous 7. iff gof: x > z is "g of continuous Continuous function farrow_forwardFor the problem below, what are the possible solutions for x? Select all that apply. 2 x²+8x +11 = 0 x2+8x+16 = (x+4)² = 5 1116arrow_forwardFor the problem below, what are the possible solutions for x? Select all that apply. x² + 12x - 62 = 0 x² + 12x + 36 = 62 + 36 (x+6)² = 98arrow_forward
- Select the polynomials below that can be solved using Completing the Square as written. 6m² +12m 8 = 0 Oh²-22x 7 x²+4x-10= 0 x² + 11x 11x 4 = 0arrow_forwardProve that the usual toplogy is firast countble or hot and second countble. ①let cofinte toplogy onx show that Sivast countble or hot and second firast. 3) let (x,d) be matricspace show that is first and second countble. 6 Show that Indiscret toplogy is firstand Second op countble or not.arrow_forwarda) Find the scalars p, q, r, s, k1, and k2. b) Is there a different linearly independent eigenvector associated to either k1 or k2? If yes,find it. If no, briefly explain.arrow_forward
- This box plot represents the score out of 90 received by students on a driver's education exam. 75% of the students passed the exam. What is the minimum score needed to pass the exam? Submitting x and Whickers Graph Low 62, C 62 66 70 74 78 82 86 90 Driver's education exam score (out of 90)arrow_forwardHow many different rectangles can be made whose side lengths, in centimeters, are counting numbers and whose are is 1,159 square centimeters? Draw and label all possible rectangles.arrow_forwardCo Given show that Solution Take home Су-15 1994 +19 09/2 4 =a log суто - 1092 ж = a-1 2+1+8 AI | SHOT ON S4 INFINIX CAMERAarrow_forward
- a Question 7. If det d e f ghi V3 = 2. Find det -1 2 Question 8. Let A = 1 4 5 0 3 2. 1 Find adj (A) 2 Find det (A) 3 Find A-1 2g 2h 2i -e-f -d 273 2a 2b 2carrow_forwardQuestion 1. Solve the system - x1 x2 + 3x3 + 2x4 -x1 + x22x3 + x4 2x12x2+7x3+7x4 Question 2. Consider the system = 1 =-2 = 1 3x1 - x2 + ax3 = 1 x1 + 3x2 + 2x3 x12x2+2x3 = -b = 4 1 For what values of a, b will the system be inconsistent? 2 For what values of a, b will the system have only one solution? For what values of a, b will the saystem have infinitely many solutions?arrow_forwardQuestion 5. Let A, B, C ben x n-matrices, S is nonsigular. If A = S-1 BS, show that det (A) = det (B) Question 6. For what values of k is the matrix A = (2- k -1 -1 2) singular? karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Ring Examples (Abstract Algebra); Author: Socratica;https://www.youtube.com/watch?v=_RTHvweHlhE;License: Standard YouTube License, CC-BY
Definition of a Ring and Examples of Rings; Author: The Math Sorcerer;https://www.youtube.com/watch?v=8yItsdvmy3c;License: Standard YouTube License, CC-BY