Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
9th Edition
ISBN: 9781319055967
Author: Moore
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6.2, Problem 74E
To determine

To find: The null and alternative hypothesis for the provided study.

To determine

To test: The formulated hypothesis and report the p-value and the significance test results.

Blurred answer
Students have asked these similar questions
(c) Because logistic regression predicts probabilities of outcomes, observations used to build a logistic regression model need not be independent. A. false: all observations must be independent B. true C. false: only observations with the same outcome need to be independent I ANSWERED: A. false: all observations must be independent.  (This was marked wrong but I have no idea why. Isn't this a basic assumption of logistic regression)
Business discuss
Spam filters are built on principles similar to those used in logistic regression. We fit a probability that each message is spam or not spam. We have several variables for each email. Here are a few: to_multiple=1 if there are multiple recipients, winner=1 if the word 'winner' appears in the subject line, format=1 if the email is poorly formatted, re_subj=1 if "re" appears in the subject line. A logistic model was fit to a dataset with the following output:   Estimate SE Z Pr(>|Z|) (Intercept) -0.8161 0.086 -9.4895 0 to_multiple -2.5651 0.3052 -8.4047 0 winner 1.5801 0.3156 5.0067 0 format -0.1528 0.1136 -1.3451 0.1786 re_subj -2.8401 0.363 -7.824 0 (a) Write down the model using the coefficients from the model fit.log_odds(spam) = -0.8161 + -2.5651 + to_multiple  + 1.5801 winner + -0.1528 format + -2.8401 re_subj(b) Suppose we have an observation where to_multiple=0, winner=1, format=0, and re_subj=0. What is the predicted probability that this message is spam?…

Chapter 6 Solutions

Introduction to the Practice of Statistics

Ch. 6.1 - Prob. 11UYKCh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - Prob. 23ECh. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.2 - Prob. 38UYKCh. 6.2 - Prob. 39UYKCh. 6.2 - Prob. 40UYKCh. 6.2 - Prob. 41UYKCh. 6.2 - Prob. 42UYKCh. 6.2 - Prob. 43UYKCh. 6.2 - Prob. 44UYKCh. 6.2 - Prob. 45UYKCh. 6.2 - Prob. 46UYKCh. 6.2 - Prob. 47UYKCh. 6.2 - Prob. 48UYKCh. 6.2 - Prob. 49UYKCh. 6.2 - Prob. 50UYKCh. 6.2 - Prob. 51UYKCh. 6.2 - Prob. 52ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 59ECh. 6.2 - Prob. 60ECh. 6.2 - Prob. 61ECh. 6.2 - Prob. 62ECh. 6.2 - Prob. 63ECh. 6.2 - Prob. 64ECh. 6.2 - Prob. 65ECh. 6.2 - Prob. 66ECh. 6.2 - Prob. 67ECh. 6.2 - Prob. 68ECh. 6.2 - Prob. 69ECh. 6.2 - Prob. 70ECh. 6.2 - Prob. 71ECh. 6.2 - Prob. 72ECh. 6.2 - Prob. 73ECh. 6.2 - Prob. 74ECh. 6.2 - Prob. 75ECh. 6.2 - Prob. 76ECh. 6.2 - Prob. 77ECh. 6.2 - Prob. 78ECh. 6.2 - Prob. 79ECh. 6.2 - Prob. 80ECh. 6.2 - Prob. 81ECh. 6.2 - Prob. 82ECh. 6.2 - Prob. 83ECh. 6.2 - Prob. 84ECh. 6.2 - Prob. 85ECh. 6.2 - Prob. 86ECh. 6.2 - Prob. 87ECh. 6.2 - Prob. 88ECh. 6.2 - Prob. 89ECh. 6.3 - Prob. 90UYKCh. 6.3 - Prob. 91UYKCh. 6.3 - Prob. 92ECh. 6.3 - Prob. 93ECh. 6.3 - Prob. 94ECh. 6.3 - Prob. 95ECh. 6.3 - Prob. 96ECh. 6.3 - Prob. 97ECh. 6.3 - Prob. 98ECh. 6.3 - Prob. 99ECh. 6.3 - Prob. 100ECh. 6.3 - Prob. 101ECh. 6.3 - Prob. 102ECh. 6.3 - Prob. 103ECh. 6.3 - Prob. 104ECh. 6.3 - Prob. 105ECh. 6.3 - Prob. 106ECh. 6.3 - Prob. 107ECh. 6.3 - Prob. 108ECh. 6.3 - Prob. 109ECh. 6.4 - Prob. 110ECh. 6.4 - Prob. 111ECh. 6.4 - Prob. 112ECh. 6.4 - Prob. 113ECh. 6.4 - Prob. 114ECh. 6.4 - Prob. 115ECh. 6.4 - Prob. 116ECh. 6.4 - Prob. 117ECh. 6.4 - Prob. 118ECh. 6.4 - Prob. 119ECh. 6.4 - Prob. 120ECh. 6.4 - Prob. 121ECh. 6.4 - Prob. 122ECh. 6.4 - Prob. 123ECh. 6 - Prob. 124ECh. 6 - Prob. 125ECh. 6 - Prob. 126ECh. 6 - Prob. 127ECh. 6 - Prob. 128ECh. 6 - Prob. 129ECh. 6 - Prob. 130ECh. 6 - Prob. 131ECh. 6 - Prob. 132ECh. 6 - Prob. 133ECh. 6 - Prob. 134ECh. 6 - Prob. 135ECh. 6 - Prob. 136ECh. 6 - Prob. 137ECh. 6 - Prob. 138ECh. 6 - Prob. 139ECh. 6 - Prob. 140ECh. 6 - Prob. 141ECh. 6 - Prob. 142ECh. 6 - Prob. 143ECh. 6 - Prob. 144E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License