Linear Algebra With Applications (classic Version)
5th Edition
ISBN: 9780135162972
Author: BRETSCHER, OTTO
Publisher: Pearson Education, Inc.,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.2, Problem 37E
To determine
To explain: The possible value of the determinant of the matrix
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the graphs to find estimates for the solutions of the simultaneous equations.
21:46 MM
:
0 % sparxmaths.uk/studer
Sparx Maths
+
13
24,963 XP Andrey Roura
1A ✓
1B X
1C
1D
Summary
Bookwork code: 1B
歐
Calculator
not allowed
Write the ratio 3
: 1½ in its simplest form.
32
Menu
Use the graph to solve 3x2-3x-8=0
Chapter 6 Solutions
Linear Algebra With Applications (classic Version)
Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...
Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 11 through 22, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - In Exercises 23 through 30, use the determinant to...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - Find the determinants of the matrices A in...Ch. 6.1 - If A is an nn matrix, what is the relationship bet...Ch. 6.1 - If A is an nn matrix and k is an arbitrary...Ch. 6.1 - If A is a 22 matrix, what is the relationship...Ch. 6.1 - If A is an invertible 22 matrix, what is the...Ch. 6.1 - Find nonzero numbers a, b, c, d, e, f, g, h such...Ch. 6.1 - Find 22 matrices A, B, C, D such that...Ch. 6.1 - For two nonparallel vectors v and w in 3 ,...Ch. 6.1 - Prob. 50ECh. 6.1 - Explain why any pattern P in a matrix A, other...Ch. 6.1 - Consider two vectors v and w in 3 . Form the...Ch. 6.1 - Find the determinant of the (2n)(2n) matrix A=[0 I...Ch. 6.1 - Is the determinant of the matrix...Ch. 6.1 - Does the following matrix have an LU...Ch. 6.1 - Let Mn be the nn matrix with all 1‘s along “the...Ch. 6.1 - A square matrix is called a permutation matrix if...Ch. 6.1 - a. Find a noninvertible 22 matrix whose entries...Ch. 6.1 - Consider the function F(A)=F[vw]=vw from 22 to ,...Ch. 6.1 - Which of the following functions F of A=[abcd] are...Ch. 6.1 - Show that the function F[abcdefghj]=bfg is linear...Ch. 6.1 - In Exercises 62 through 64, consider a function D...Ch. 6.1 - In Exercises 62 through 64, consider a function D...Ch. 6.1 - In Exercises 62 through 64, consider a function D...Ch. 6.1 - Consider a function D from 33 to that is linearin...Ch. 6.1 - a. Let V be the linear space of all functions F...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Use Gaussian elimination to find the determinant...Ch. 6.2 - Consider a 44matrix A with rows v1,v2,v3,v4. If...Ch. 6.2 - Consider a 44matrix A with rows v1,v2,v3,v4. If...Ch. 6.2 - Consider a 44matrix A with rows v1,v2,v3,v4. If...Ch. 6.2 - Consider a 44matrix A with rows v1,v2,v3,v4. If...Ch. 6.2 - Consider a 44matrix A with rows v1,v2,v3,v4. If...Ch. 6.2 - Consider a 44matrix A with rows v1,v2,v3,v4. If...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Find the determinants of the linear...Ch. 6.2 - Let Pn be the nn matrix whose entries are all...Ch. 6.2 - Consider two distinct real numbers, a and b. We...Ch. 6.2 - Vandermonde determinants (introduced by...Ch. 6.2 - Use Exercise 31 to find...Ch. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Consider two distinct points [a1a2] and [b1b2] in...Ch. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - If A is an invertible matrix, what can you say...Ch. 6.2 - If A is an orthogonal matrix, what are the...Ch. 6.2 - Consider a skew-symmetric nn matrix A. where nis...Ch. 6.2 - Consider an nm matrix A=QR ,where Q is an nm...Ch. 6.2 - Consider two vectors v and w in n . Form the...Ch. 6.2 - The cross product in n . Consider the vectors...Ch. 6.2 - Find the derivative of the function...Ch. 6.2 - Given some numbers a, b, c, d, e, and f such that...Ch. 6.2 - Is the function T[abcd]=ad+bc linear in the rows...Ch. 6.2 - Consider the linear transformation T(x)=det[ v 1...Ch. 6.2 - Give an example of a 33 matrix A with all nonzero...Ch. 6.2 - Find the determinant of the matrix...Ch. 6.2 - Find the determinant of the (2n)(2n) matrix A=[0 I...Ch. 6.2 - Consider a 22 matrix A=[abcd] with column vectors...Ch. 6.2 - Consider an invertible 22 matrix A with...Ch. 6.2 - Let A and B be 22 matrices with integer entries...Ch. 6.2 - For a fixed positive integer n, let D be a...Ch. 6.2 - Use the characterization of the determinant given...Ch. 6.2 - Consider a linear transformation T from m+n to m...Ch. 6.2 - Find the matrix M introduced in Exercise 57for the...Ch. 6.2 - If the equation detA=detB holds for two nn...Ch. 6.2 - Consider an nn matrix A. Show that swapping the...Ch. 6.2 - Consider nn matrices A. B. C, and D, where A...Ch. 6.2 - Consider nn matrices A, B , C, and D such that...Ch. 6.2 - Show that more than n!=123n multiplications are...Ch. 6.2 - Show that fewer than en! algebraic operations...Ch. 6.2 - Let Mn be the nn matrix with 1‘s on the main...Ch. 6.2 - Let Mn be the matrix with all 1‘s along the main...Ch. 6.2 - Consider a pattern P in an nn matrix, and choose...Ch. 6.2 - Using the terminology introduced in the proof of...Ch. 6.2 - Let G be the set of all integers x that can be...Ch. 6.2 - Throughout this exercise, consider the Fibonacci...Ch. 6.3 - Find the area of the parallelogram defined by [37]...Ch. 6.3 - Find the area of the triangle defined by [37] and...Ch. 6.3 - Prob. 3ECh. 6.3 - Consider the area A of the triangle with vertices...Ch. 6.3 - The tetrahedron defined by three vectors v1,v2,v3...Ch. 6.3 - What is the relationship between the volume of...Ch. 6.3 - Find the area of the following region:Ch. 6.3 - Demonstrate the equation |detA|=v1v2vn for a...Ch. 6.3 - If v1 and v2 are linearly independent vectors in 2...Ch. 6.3 - Consider an nn matrix A=[v1v2vn] .What is the...Ch. 6.3 - Consider a linear transformation T(x)=Ax from 2 to...Ch. 6.3 - Consider those 44 matrices whose entries are all...Ch. 6.3 - Prob. 13ECh. 6.3 - Find the 3-volume of the 3-parallelepiped defined...Ch. 6.3 - Demonstrate Theorem 6.3.6 for linearly dependent...Ch. 6.3 - True orfalse? If is a parallelogram in 3 and...Ch. 6.3 - (For some background on the cross product in n ,...Ch. 6.3 - If T(x)=Ax is an invertible linear transformation...Ch. 6.3 - A basis v1,v2,v3 of 3 is called positively...Ch. 6.3 - We say that a linear transformation T from 3 to 3...Ch. 6.3 - Arguing geometrically, determine whether the...Ch. 6.3 - Use Cramer’s rule to solve the systems in...Ch. 6.3 - Use Cramer’s rule to solve the systems in...Ch. 6.3 - Use Cramer’s rule to solve the systems in...Ch. 6.3 - Find the classical adjoint of the matrix...Ch. 6.3 - Consider an nn matrix A with integer entries such...Ch. 6.3 - Consider two positive numbers a and b. Solve the...Ch. 6.3 - In an economics text,10 we find the following...Ch. 6.3 - In an economics text11 we find the following...Ch. 6.3 - Find the classical adjointof A=[100230456] .Ch. 6.3 - Find the classical adjointof A=[111123166] .Ch. 6.3 - Find the classical adjointof A=[0001010000101000]...Ch. 6.3 - Find the classical adjointof A=[1000020000300004]...Ch. 6.3 - For an invertible nn matrix A, find the product...Ch. 6.3 - For an invertible nn matrix A, what is the...Ch. 6.3 - For an invertible nn matrix A, what is adj(adj A)?Ch. 6.3 - For an invertible nn matrix A, what is the...Ch. 6.3 - For two invertible nn matrices A and B, what is...Ch. 6.3 - If A and B are invertible nn matrices, and if A...Ch. 6.3 - For an invertible nn matrix A. consider the...Ch. 6.3 - Show that an nn matrix A has at least one...Ch. 6.3 - Even if an nn matrix A fails to be invertible, we...Ch. 6.3 - Show that A(adjA)=0(adjA)A for all noninvertible...Ch. 6.3 - If A isan nn matrixo frank n1 , what is the rank...Ch. 6.3 - Find all 22 matrices A such that adj(A)=AT .Ch. 6.3 - (For those who have studied multivariable...Ch. 6.3 - Consider the quadrilateral in the accompanying...Ch. 6.3 - What is the area of the largest ellipse you can...Ch. 6.3 - What are the lengths of the semi axes of the...Ch. 6 - If B is obtained be multiplying a column of A by...Ch. 6 - det(A10)=(detA)10 for all 1010 matrices A.Ch. 6 - The determinant of any diagonal nn matrix is the...Ch. 6 - If matrix B is obtained by swapping two rows of an...Ch. 6 - If A=[uvw] is any 33 matrix, then detA=u(vw) .Ch. 6 - det(4A)=4detA for all 44 matrices A.Ch. 6 - det(A+B)=4detA+detB for all 55 matrices A and B.Ch. 6 - The equation det(A)=detA holds for all 66...Ch. 6 - If all the entries of a 77 matrix A are 7, then...Ch. 6 - An 88 matrix fails to be invertible if (and only...Ch. 6 - Prob. 11ECh. 6 - Prob. 12ECh. 6 - Prob. 13ECh. 6 - Prob. 14ECh. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Prob. 17ECh. 6 - Prob. 18ECh. 6 - Prob. 19ECh. 6 - Prob. 20ECh. 6 - If all the entries of a square matrix are 1 or 0,...Ch. 6 - If all the entries of a square matrix A are...Ch. 6 - If all the columns of a square matrix A are unit...Ch. 6 - If A is any noninvertible square matrix, then...Ch. 6 - If the determinant of a square matrix is 1 , then...Ch. 6 - If all the entries of an invertible matrix A are...Ch. 6 - There exists a 44 matrix A whose entries are all 1...Ch. 6 - If the determinant of a 22 matrix A is 4, then the...Ch. 6 - If A=[uvw] is a 33 matrix, then the formula...Ch. 6 - There exist invertible 22 matrices A and B such...Ch. 6 - There exist real invertible 33 matrices A and S...Ch. 6 - There exist real invertible 33 matrices A and S...Ch. 6 - If A is any symmetric matrix, then detA=1 or...Ch. 6 - If A is any skew-symmetric 44 matrix, then detA=0...Ch. 6 - If detA=detB for two nn matrices A and B, thenA...Ch. 6 - Suppose A is an nn matrix and B is obtained fromA...Ch. 6 - If an nn matrix A is invertible, then there must...Ch. 6 - If all the entries of matrices A and A1 are...Ch. 6 - If a square matrix A is invertible, then its...Ch. 6 - There exists a real 33 matrix A such that A2=I3 .Ch. 6 - If all the diagonal entries of an nn matrix A are...Ch. 6 - If all the diagonal entries of nn matrix A are...Ch. 6 - For every nonzero 22 matrix A there exists a 22...Ch. 6 - If A is a 44 matrix whose entries are all 1 or 1 ,...Ch. 6 - If A is an invertible nn matrix, then A must...Ch. 6 - There exists a real number k such that the matrix...Ch. 6 - If A and B are orthogonal nn matrices such that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forwardQuestion 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Matrix Operations Full Length; Author: ProfRobBob;https://www.youtube.com/watch?v=K5BLNZw7UeU;License: Standard YouTube License, CC-BY
Intro to Matrices; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=yRwQ7A6jVLk;License: Standard YouTube License, CC-BY