Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.2, Problem 26E
To determine
An isomorphism from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Demonstrate or explain why the system (P(R#), +, *) is a ring with identity and is a commutative ring, that is, demonstrate or explain why:i. The ring (P(R#), +, *) has an identity element corresponding to the * operationii. The ring (P(R#), +, *) is commutative corresponding to the * operation.
Explain why the ring of integers Z under usual addition and multiplication is not a field.
Question 2.
(a) Prove that [65]186 has a multiplicative inverse in the ring Z186.
(b) Compute this multiplicative inverse.
Chapter 6 Solutions
Elements Of Modern Algebra
Ch. 6.1 - True or False
Label each of the following...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - True or false
Label each of the following...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - True or false
Label each of the following...Ch. 6.1 - True or false
Label each of the following...Ch. 6.1 - Label each of the following statements as either...Ch. 6.1 - Exercises Let I be a subset of ring R. Prove that...Ch. 6.1 - Prob. 2E
Ch. 6.1 - Prove or disprove each of the following...Ch. 6.1 - Exercises
If and are two ideals of the ring ,...Ch. 6.1 - Prob. 5ECh. 6.1 - Exercises
Find two ideals and of the ring such...Ch. 6.1 - Exercises
Let be an ideal of a ring , and let be...Ch. 6.1 - Exercises
If and are two ideals of the ring ,...Ch. 6.1 - Find the principal ideal (z) of Z such that each...Ch. 6.1 - Let I1 and I2 be ideals of the ring R. Prove that...Ch. 6.1 - Find a principal ideal (z) of such that each of...Ch. 6.1 - 12. Let be a commutative ring with unity. If...Ch. 6.1 - 13. Verify each of the following statements...Ch. 6.1 - 14. Let be an ideal in a ring with unity . Prove...Ch. 6.1 - Let I be an ideal in a ring R with unity. Prove...Ch. 6.1 - Prove that if R is a field, then R has no...Ch. 6.1 - In the ring of integers, prove that every subring...Ch. 6.1 - Let a0 in the ring of integers . Find b such that...Ch. 6.1 - 19. Let and be nonzero integers. Prove that if and...Ch. 6.1 - 20. If and are nonzero integers and is the least...Ch. 6.1 - Prove that every ideal of n is a principal ideal....Ch. 6.1 - 22. Let . Prove .
Ch. 6.1 - 23. Find all distinct principal ideals of for the...Ch. 6.1 - 24. If is a commutative ring and is a fixed...Ch. 6.1 - Given that the set S={[xy0z]|x,y,z} is a ring with...Ch. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - 28. a. Show that the set is a ring with respect to...Ch. 6.1 - 29. Let be the set of Gaussian integers . Let .
...Ch. 6.1 - a. For a fixed element a of a commutative ring R,...Ch. 6.1 - Let R be a commutative ring that does not have a...Ch. 6.1 - 32. a. Let be an ideal of the commutative ring ...Ch. 6.1 - 33. An element of a ring is called nilpotent if...Ch. 6.1 - 34. If is an ideal of prove that the set is an...Ch. 6.1 - Let R be a commutative ring with unity whose only...Ch. 6.1 - 36. Suppose that is a commutative ring with unity...Ch. 6.2 - True or false
Label each of the following...Ch. 6.2 - True or false
Label each of the following...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Label each of the following statements as either...Ch. 6.2 - Each of the following rules determines a mapping...Ch. 6.2 - 2. Prove that is commutative if and only if is...Ch. 6.2 - 3. Prove that has a unity if and only if has a...Ch. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Assume that the set S={[xy0z]|x,y,z} is a ring...Ch. 6.2 - Assume that the set R={[x0y0]|x,y} is a ring with...Ch. 6.2 - 9. For any let denote in and let denote in .
a....Ch. 6.2 - Let :312 be defined by ([x]3)=4[x]12 using the...Ch. 6.2 - 11. Show that defined by is not a homomorphism.
Ch. 6.2 - 12. Consider the mapping defined by . Decide...Ch. 6.2 - Prob. 13ECh. 6.2 -
14. Let be a ring with unity . Verify that the...Ch. 6.2 - In the field of a complex numbers, show that the...Ch. 6.2 - Prob. 16ECh. 6.2 - Define :2()2(2) by ([abcd])=[[a][b][c][d]]. Prove...Ch. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - 25. Figure 6.3 gives addition and multiplication...Ch. 6.2 - Prob. 26ECh. 6.2 - 27. For each given value of find all homomorphic...Ch. 6.2 - Prob. 28ECh. 6.2 - 29. Assume that is an epimorphism from to ....Ch. 6.2 - 30. In the ring of integers, let new operations of...Ch. 6.2 - Prob. 31ECh. 6.3 - True or False
Label each of the following...Ch. 6.3 - Prob. 2TFECh. 6.3 - True or False
Label each of the following...Ch. 6.3 - True or False
Label each of the following...Ch. 6.3 - Prob. 5TFECh. 6.3 - Find the characteristic of each of the following...Ch. 6.3 - Find the characteristic of the following rings. 22...Ch. 6.3 - 3. Let be an integral domain with positive...Ch. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - 8. Prove that the characteristic of a field is...Ch. 6.3 - Let D be an integral domain with four elements,...Ch. 6.3 - Let R be a commutative ring with characteristic 2....Ch. 6.3 -
11. a. Give an example of a ring of...Ch. 6.3 - 12. Let be a commutative ring with prime...Ch. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - 15. In a commutative ring of characteristic 2,...Ch. 6.3 - A Boolean ring is a ring in which all elements x...Ch. 6.3 - 17. Suppose is a ring with positive...Ch. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Let I be the set of all elements of a ring R that...Ch. 6.3 - 21. Prove that if a ring has a finite number of...Ch. 6.3 - 22. Let be a ring with finite number of...Ch. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prove that every ordered integral domain has...Ch. 6.4 - Label each of the following statements as either...Ch. 6.4 - Prob. 2TFECh. 6.4 - According to part a of Example 3 in Section 5.1,...Ch. 6.4 - Let R be as in Exercise 1, and show that the...Ch. 6.4 - Prob. 3ECh. 6.4 - Show that the ideal is a maximal ideal of .
Ch. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Find all maximal ideals of .
Ch. 6.4 - Find all maximal ideals of 18.Ch. 6.4 - Let be the ring of Gaussian integers. Let
...Ch. 6.4 - Let R bethe ring of Gaussian integersas an...Ch. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 20ECh. 6.4 - Find all prime ideals of .
Ch. 6.4 - Find all prime ideals of .
Ch. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - . a. Let, and . Show that and are only ideals...Ch. 6.4 - 27. If is a commutative ring with unity, prove...Ch. 6.4 - If R is a finite commutative ring with unity,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Examples 5 and 6 of Section 5.1 showed that P(U) is a commutative ring with unity. In Exercises 4 and 5, let U={a,b}. Is P(U) a field? If not, find all nonzero elements that do not have multiplicative inverses. [Type here][Type here]arrow_forward22. Let be a ring with finite number of elements. Show that the characteristic of divides .arrow_forwarda. If R is a commutative ring with unity, show that the characteristic of R[ x ] is the same as the characteristic of R. b. State the characteristic of Zn[ x ]. c. State the characteristic of Z[ x ].arrow_forward
- 25. Figure 6.3 gives addition and multiplication tables for the ring in Exercise 34 of section 5.1. Use these tables, together with addition and multiplication tables for to find an isomorphism from toarrow_forwardWrite 20 as the direct sum of two of its nontrivial subgroups.arrow_forwardFind all homomorphic images of the quaternion group.arrow_forward
- [Type here] Examples 5 and 6 of Section 5.1 showed that is a commutative ring with unity. In Exercises 4 and 5, let . 4. Is an integral domain? If not, find all zero divisors in . [Type here]arrow_forwardAn element in a ring is idempotent if . Prove that a division ring must contain exactly two idempotent e elements.arrow_forward44. Consider the set of all matrices of the form, where and are real numbers, with the same rules for addition and multiplication as in. a. Show that is a ring that does not have a unity. b. Show that is not a commutative ring.arrow_forward
- Let R be a commutative ring with characteristic 2. Show that each of the following is true for all x,yR a. (x+y)2=x2+y2 b. (x+y)4=x4+y4arrow_forwardLet R be a commutative ring with unity whose only ideals are {0} and R Prove that R is a field.(Hint: See Exercise 30.)arrow_forward11. a. Give an example of a ring of characteristic 4, and elements in such that b. Give an example of a noncommutative ring with characteristic 4, and elements in such that .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY