ADVANCED ENGINEERING MATHEMATICS
10th Edition
ISBN: 9781119664697
Author: Kreyszig
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.2, Problem 1P
To determine
To solve: The initial value problem y′+5.2y=19.4sin2t,y(0)=0 by using Laplace transform.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
18.9. Let denote the boundary of the rectangle whose vertices are
-2-2i, 2-21, 2+i and -2+i in the positive direction. Evaluate each of
the following integrals:
(a).
之一
dz, (b).
dz, (b).
COS 2
coz dz,
dz
(z+1)
(d).
z 2 +2
dz, (e).
(c). (2z+1)zdz,
z+
1
(f). £,
· [e² sin = + (2² + 3)²] dz.
(2+3)2
18.10. Let f be analytic inside and on the unit circle 7. Show that, for
0<|z|< 1,
f(E)
f(E)
2πif(z) =
--- d.
18.4. Let f be analytic within and on a positively oriented closed
contoury, and the point zo is not on y. Show that
L
f(z)
(-20)2 dz = '(2) dz.
2-20
Chapter 6 Solutions
ADVANCED ENGINEERING MATHEMATICS
Ch. 6.1 - Prob. 1PCh. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....
Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Find the transform. Show the details of your work....Ch. 6.1 - Table 6.1. Convert this table to a table for...Ch. 6.1 - Using in Prob. 10, find , where f1(t) = 0 if t ≦...Ch. 6.1 - Table 6.1. Derive formula 6 from formulas 9 and...Ch. 6.1 - Nonexistence. Show that does not satisfy a...Ch. 6.1 - Nonexistence. Give simple examples of functions...Ch. 6.1 - Existence. Show that . [Use (30) in App. 3.1.]...Ch. 6.1 - Change of scale. If and c is any positive...Ch. 6.1 - Inverse transform. Prove that is linear. Hint:...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - Given F(s) = ℒ(f), find f(t). a, b, L, n are...Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.1 - In Probs. 33–36 find the transform. In Probs....Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the IVPs by the Laplace transform. If...Ch. 6.2 - Solve the shifted data IVPs by the Laplace...Ch. 6.2 - Solve the shifted data IVPs by the Laplace...Ch. 6.2 - Solve the shifted data IVPs by the Laplace...Ch. 6.2 - Solve the shifted data IVPs by the Laplace...Ch. 6.2 - Using (1) or (2), find if f(t) equals:
t cos 4t
Ch. 6.2 - Using (1) or (2), find if f(t) equals:
te−at
Ch. 6.2 - Using (1) or (2), find if f(t) equals:
cos2 2t
Ch. 6.2 - Using (1) or (2), find if f(t) equals:
sin2 ωt
Ch. 6.2 - Using (1) or (2), find if f(t) equals:
sin4 t....Ch. 6.2 - Using (1) or (2), find if f(t) equals:
cosh2 t
Ch. 6.2 - INVERSE TRANSFORMS BY INTEGRATION
Using Theorem 3,...Ch. 6.2 - INVERSE TRANSFORMS BY INTEGRATION
Using Theorem 3,...Ch. 6.2 - INVERSE TRANSFORMS BY INTEGRATION
Using Theorem 3,...Ch. 6.2 - INVERSE TRANSFORMS BY INTEGRATION
Using Theorem 3,...Ch. 6.2 - INVERSE TRANSFORMS BY INTEGRATION
Using Theorem 3,...Ch. 6.2 - INVERSE TRANSFORMS BY INTEGRATION
Using Theorem 3,...Ch. 6.2 - INVERSE TRANSFORMS BY INTEGRATION
Using Theorem 3,...Ch. 6.3 - Report on Shifting Theorems. Explain and compare...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Sketch or graph the given function, which is...Ch. 6.3 - Find and sketch or graph f(t) if equals
e−3s/(s −...Ch. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Find and sketch or graph f(t) if equals
e−3s/s4
Ch. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Using the Laplace transform and showing the...Ch. 6.3 - Using the Laplace transform and showing the...Ch. 6.3 - Prob. 20PCh. 6.3 - Using the Laplace transform and showing the...Ch. 6.3 - Using the Laplace transform and showing the...Ch. 6.3 - Prob. 23PCh. 6.3 - Using the Laplace transform and showing the...Ch. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.3 - Prob. 35PCh. 6.3 - Prob. 36PCh. 6.3 - Prob. 37PCh. 6.3 - Prob. 38PCh. 6.3 - Prob. 39PCh. 6.3 - Prob. 40PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 15PCh. 6.5 - CONVOLUTIONS BY INTEGRATION
Find:
Ch. 6.5 - CONVOLUTIONS BY INTEGRATION
Find:
2.
Ch. 6.5 - CONVOLUTIONS BY INTEGRATION
Find:
3.
Ch. 6.5 - CONVOLUTIONS BY INTEGRATION
Find:
4.
Ch. 6.5 - Prob. 5PCh. 6.5 - Prob. 6PCh. 6.5 - Prob. 7PCh. 6.5 - Prob. 8PCh. 6.5 - Prob. 9PCh. 6.5 - Prob. 10PCh. 6.5 - Prob. 11PCh. 6.5 - Prob. 12PCh. 6.5 - Prob. 13PCh. 6.5 - Prob. 14PCh. 6.5 - CAS EXPERIMENT. Variation of a Parameter. (a)...Ch. 6.5 - Prob. 17PCh. 6.5 - Prob. 18PCh. 6.5 - Prob. 19PCh. 6.5 - Prob. 20PCh. 6.5 - Prob. 21PCh. 6.5 - Prob. 22PCh. 6.5 - Prob. 23PCh. 6.5 - Prob. 24PCh. 6.5 - Prob. 25PCh. 6.5 - Prob. 26PCh. 6.6 - Prob. 2PCh. 6.6 - Prob. 3PCh. 6.6 - Prob. 4PCh. 6.6 - Prob. 5PCh. 6.6 - Prob. 6PCh. 6.6 - Prob. 7PCh. 6.6 - Prob. 8PCh. 6.6 - Prob. 9PCh. 6.6 - Prob. 10PCh. 6.6 - Prob. 11PCh. 6.6 - Prob. 14PCh. 6.6 - Prob. 15PCh. 6.6 - Prob. 16PCh. 6.6 - Prob. 17PCh. 6.6 - Prob. 18PCh. 6.6 - Prob. 19PCh. 6.6 - Prob. 20PCh. 6.7 - Prob. 2PCh. 6.7 - Prob. 3PCh. 6.7 - Prob. 4PCh. 6.7 - Prob. 5PCh. 6.7 - Prob. 6PCh. 6.7 - Prob. 7PCh. 6.7 - Prob. 8PCh. 6.7 - Prob. 9PCh. 6.7 - Prob. 10PCh. 6.7 - Prob. 11PCh. 6.7 - Prob. 12PCh. 6.7 - Prob. 13PCh. 6.7 - Prob. 14PCh. 6.7 - Prob. 15PCh. 6.7 - Prob. 16PCh. 6.7 - Prob. 19PCh. 6.7 - Prob. 20PCh. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - Prob. 3RQCh. 6 - Prob. 4RQCh. 6 - Prob. 5RQCh. 6 - When and how do you use the unit step function and...Ch. 6 - If you know f(t) = ℒ−1{F(s)}, how would you find...Ch. 6 - Explain the use of the two shifting theorems from...Ch. 6 - Prob. 9RQCh. 6 - Prob. 10RQCh. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the transform, indicating the method used and...Ch. 6 - Find the inverse transform, indicating the method...Ch. 6 - Prob. 21RQCh. 6 - Prob. 22RQCh. 6 - Prob. 23RQCh. 6 - Prob. 24RQCh. 6 - Prob. 25RQCh. 6 - Prob. 26RQCh. 6 - Prob. 27RQCh. 6 - Prob. 28RQCh. 6 - Prob. 29RQCh. 6 - Prob. 30RQCh. 6 - Prob. 31RQCh. 6 - Prob. 32RQCh. 6 - Prob. 33RQCh. 6 - Prob. 34RQCh. 6 - Prob. 35RQCh. 6 - Prob. 36RQCh. 6 - Prob. 37RQCh. 6 - Prob. 38RQCh. 6 - Prob. 39RQCh. 6 - Prob. 40RQCh. 6 - Prob. 41RQCh. 6 - Prob. 42RQCh. 6 - Prob. 43RQCh. 6 - Prob. 44RQCh. 6 - Prob. 45RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- 18.9. Let denote the boundary of the rectangle whose vertices are -2-2i, 2-21,2+i and -2+i in the positive direction. Evaluate each of the following integrals: (a). rdz, (b). dz (b). COS 2 coz dz, (z+1) (d). 之一 z 2 +2 dz, (e). dz (c). (2z + 1)2dz, (2z+1) 1 (f). £, · [e² sin = + (2² + 3)²] dz. z (22+3)2arrow_forward18.8. (a). Let be the contour z = e-≤0≤ traversed in the า -dz = 2xi. positive direction. Show that, for any real constant a, Lex dzarrow_forwardf(z) 18.7. Let f(z) = (e² + e³)/2. Evaluate dz, where y is any simple closed curve enclosing 0.arrow_forward
- 18. If m n compute the gcd (a² + 1, a² + 1) in terms of a. [Hint: Let A„ = a² + 1 and show that A„|(Am - 2) if m > n.]arrow_forwardFor each real-valued nonprincipal character x mod k, let A(n) = x(d) and F(x) = Σ : dn * Prove that F(x) = L(1,x) log x + O(1). narrow_forwardBy considering appropriate series expansions, e². e²²/2. e²³/3. .... = = 1 + x + x² + · ... when |x| < 1. By expanding each individual exponential term on the left-hand side the coefficient of x- 19 has the form and multiplying out, 1/19!1/19+r/s, where 19 does not divide s. Deduce that 18! 1 (mod 19).arrow_forward
- By considering appropriate series expansions, ex · ex²/2 . ¸²³/³ . . .. = = 1 + x + x² +…… when |x| < 1. By expanding each individual exponential term on the left-hand side and multiplying out, show that the coefficient of x 19 has the form 1/19!+1/19+r/s, where 19 does not divide s.arrow_forwardLet 1 1 r 1+ + + 2 3 + = 823 823s Without calculating the left-hand side, prove that r = s (mod 823³).arrow_forwardFor each real-valued nonprincipal character X mod 16, verify that L(1,x) 0.arrow_forward
- *Construct a table of values for all the nonprincipal Dirichlet characters mod 16. Verify from your table that Σ x(3)=0 and Χ mod 16 Σ χ(11) = 0. x mod 16arrow_forwardFor each real-valued nonprincipal character x mod 16, verify that A(225) > 1. (Recall that A(n) = Σx(d).) d\narrow_forward24. Prove the following multiplicative property of the gcd: a k b h (ah, bk) = (a, b)(h, k)| \(a, b)' (h, k) \(a, b)' (h, k) In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY