Practical Applications
8. Electrical Trades As explained in Example 7, excess energy generated by solar panels can often be sold back to the power company. Over a 6-month period, a household consumed 212, 150, –160, –178, –148, and 135 kWh (kilowatt-hours) of electricity from the power company. What was the net amount of electricity consumed by the household? (Express your answer as a signed number.)
Electrical Trades Excess electricity generated by solar panels can often be sold back to a power company. Over the course of a year, one particular homeowner using solar energy consumed the following monthly amounts of electricity according to her electric bill: –112, –42, 86, 108, 123, –65, 144, –122, –186, –114, 22, and 65 kWh (kilowatt-hours). A positive number means she purchased electricity, while a negative number means she sold electricity back to the power company. We can calculate the net amount of electricity bought or sold during this period by adding the 12 monthly amounts. Rearranging the numbers into a positive group and a negative group, we have:
Net amount = (86 + 108 + 123 + 144 + 22 + 65) + [(—112) + (–42) + (–65) + (–122) + (–186) + (–114)]
= (+548) + (–641) = –93 kWh
Because the net amount was a negative number, the electric company had to pay the homeowner for 93 kWh of electricity for the year.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
MYLAB MATH FOR MATHEMATICS FOR THE TRAD
- Forces of 9 pounds and 15 pounds act on each other with an angle of 72°. The magnitude of the resultant force The resultant force has an angle of pounds. * with the 9 pound force. The resultant force has an angle of with the 15 pound force. It is best to calculate each angle separately and check by seeing if they add to 72°.arrow_forward1. Sketch the following sets and determine which are domains: (a) |z−2+i| ≤ 1; - (c) Imz> 1; (e) 0≤ arg z≤ л/4 (z ± 0); Ans. (b), (c) are domains. (b) |2z+3| > 4; (d) Im z = 1; - (f) | z − 4| ≥ |z.arrow_forward8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward= Let (6,2,-5) and = (5,4, -6). Compute the following: บี.บี. บี. นี = 2 −4(u. v) = (-4). v= ū. (-40) (ū. v) v =arrow_forwardLet ā-6+4j- 1k and b = 7i8j+3k. Find a. b.arrow_forward
- 10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward
- 7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forwardSo let's see, the first one is the first one, and the second one is based on the first one!!arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill