Concept explainers
(a)
To find:
The numbers of votes were cast between three choices possible locations for the party before the polls close for the given condition.
(b)
The winner by using the plurality method of voting for possible locations for the party.
(c)
To find:
The percentage of votes receives by the Park for the given condition.
(d)
To find:
The winner by using instant runoff method for possible locations for the party.
(e)
To find:
The percentage of votes obtained by the beach.
(f)
To find:
The winner by using the Borda count method.
(g)
To find:
The points obtained by the winner in part (f).
(h)
To find:
The winner by using pairwise comparison method for possible locations of the party.
(i)
To find:
The points obtained by the winner in part (h).

Trending nowThis is a popular solution!

Chapter 6 Solutions
MATHEMATICS A PRACTICAL ODYSSEY W/ACCESS
- An engineer is designing a pipeline which is supposed to connect two points P and S. The engineer decides to do it in three sections. The first section runs from point P to point Q, and costs $48 per mile to lay, the second section runs from point Q to point R and costs $54 per mile, the third runs from point R to point S and costs $44 per mile. Looking at the diagram below, you see that if you know the lengths marked x and y, then you know the positions of Q and R. Find the values of x and y which minimize the cost of the pipeline. Please show your answers to 4 decimal places. 2 Miles x = 1 Mile R 10 miles miles y = milesarrow_forwardhelp on this, results givenarrow_forwardAn open-top rectangular box is being constructed to hold a volume of 150 in³. The base of the box is made from a material costing 7 cents/in². The front of the box must be decorated, and will cost 11 cents/in². The remainder of the sides will cost 3 cents/in². Find the dimensions that will minimize the cost of constructing this box. Please show your answers to at least 4 decimal places. Front width: Depth: in. in. Height: in.arrow_forward
- Find and classify the critical points of z = (x² – 8x) (y² – 6y). Local maximums: Local minimums: Saddle points: - For each classification, enter a list of ordered pairs (x, y) where the max/min/saddle occurs. Enter DNE if there are no points for a classification.arrow_forwardCalculate the 90% confidence interval for the population mean difference using the data in the attached image. I need to see where I went wrong.arrow_forwardSuppose that f(x, y, z) = (x − 2)² + (y – 2)² + (z − 2)² with 0 < x, y, z and x+y+z≤ 10. 1. The critical point of f(x, y, z) is at (a, b, c). Then a = b = C = 2. Absolute minimum of f(x, y, z) is and the absolute maximum isarrow_forward
- a) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 x2 x3 81 82 83 84 81 -2 0 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 -2 -2 0 11 0 0-4 0 -8arrow_forwardb) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau, and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize ₁ - 2x2+x34x4 subject to 2x1+x22x3x41, 5x1 + x2-x3-×4 ≤ −1, 2x1+x2-x3-34 2, 1, 2, 3, 40.arrow_forward9. An elementary single period market model contains a risk-free asset with interest rate r = 5% and a risky asset S which has price 30 at time t = 0 and will have either price 10 or 60 at time t = 1. Find a replicating strategy for a contingent claim with payoff h(S₁) = max(20 - S₁, 0) + max(S₁ — 50, 0). Total [8 Marks]arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
