In Problems 57 – 62 , set up a definite integral that represents the area bounded by the graphs of the indicated equations over the given interval . Find the areas to three decimal places . [Hint: A circle of radius r , with center at the origin , has equation x 2 + y 2 = r 2 and area π r 2 ]. 57. y = 9 − x 2 ; y = 0 ; − 3 ≤ x ≤ 3
In Problems 57 – 62 , set up a definite integral that represents the area bounded by the graphs of the indicated equations over the given interval . Find the areas to three decimal places . [Hint: A circle of radius r , with center at the origin , has equation x 2 + y 2 = r 2 and area π r 2 ]. 57. y = 9 − x 2 ; y = 0 ; − 3 ≤ x ≤ 3
Solution Summary: The author calculates the area of the shaded region by using an online graphing calculator.
In Problems 57–62, set up a definite integral that represents the area bounded by the graphs of the indicated equations over the given interval. Find the areas to three decimal places. [Hint: A circle of radius r, with center at the origin, has equation x2 + y2 = r2 and area πr2].
57.
y
=
9
−
x
2
;
y
=
0
;
−
3
≤
x
≤
3
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
A function is defined on the interval (-π/2,π/2) by this multipart rule:
if -π/2 < x < 0
f(x) =
a
if x=0
31-tan x
+31-cot x
if 0 < x < π/2
Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0.
a=
b= 3
Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.
f(x) = (x + 4x4) 5,
a = -1
lim f(x)
X--1
=
lim
x+4x
X--1
lim
X-1
4
x+4x
5
))"
5
))
by the power law
by the sum law
lim (x) + lim
X--1
4
4x
X-1
-(0,00+(
Find f(-1).
f(-1)=243
lim (x) +
-1 +4
35
4 ([
)
lim (x4)
5
x-1
Thus, by the definition of continuity, f is continuous at a = -1.
by the multiple constant law
by the direct substitution property
Chapter 6 Solutions
Pearson eText for Calculus for Business, Economics, Life Sciences, and Social Sciences -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.