Concept explainers
(a)
The power rating of the electric heater.
(a)
Explanation of Solution
Given:
The length of room
The width of the room
The height of the room
The initial pressure of air
The initial temperature of air
The electrical work input of fan
The heat dissipated out of the room
The mass flow rate of water
The time required by air to evacuate the room
The exit temperature of air
Calculation:
Refer Table A-1, “Gas constant of common gases”, obtain the gas constant of air as
Calculate the volume of room
Calculate the total mass of air in the room
Consider the entire room as the steady-flow system that is a control volume as mass traverses the boundary.
Write the energy balance for system in the rate form.
Here, rate of net energy transfer into the control volume is
At steady state, rate of change in internal energy of the system is zero. Thus rewrite the energy balance equation for the system.
Refer Table A-2, “Ideal – gas specific heats of common gases”, obtain the constant volume specific heat of air as
Calculate the power rating of the electric heater
Thus, the power rating of the electric heater is
(b)
The temperature rise of air as it passes through the heating duct.
(b)
Explanation of Solution
Refer Table A-2,“Ideal – gas specific heats of common gases”, obtain the constant pressure specific heat of air as
Write the mass balance equation for the flow of air.
Here, mass flow rate of air at the inlet is
Assume the heating duct as the steady-flow system that controls the volume as mass traverses the boundary.
Write the energy balance for system in the rate form as follows:
Re-write the energy balance equation for the system as follows:
Here, initial specific enthalpy of air is
Thus, the temperature rise of air as it passes through the heating duct is
Want to see more full solutions like this?
Chapter 6 Solutions
Fundamentals of Thermal-Fluid Sciences
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY