TOPICS IN PHYSICAL SCIENCE
12th Edition
ISBN: 9781260826524
Author: Tillery
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 8PEB
What is the voltage across a 60.0
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ.
(a) What is the inductance (in H) of the circuit?
0.00897
× H
(b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?
8.97
* ΜΩ
Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ.
(a) What is the inductance (in H) of the circuit?
H
(b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?
ΜΩ
At a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?
Chapter 6 Solutions
TOPICS IN PHYSICAL SCIENCE
Ch. 6 - 1. Electrostatic charge results from
a. transfer...Ch. 6 - 2. The unit of electric charge is the
a. volt.
b....Ch. 6 - 3. An electric field describes the condition of...Ch. 6 - 4. A material that has electrons that are free to...Ch. 6 - 5. An example of an electrical insulator is
a....Ch. 6 - 6. The electrical potential difference between two...Ch. 6 - 7. The rate at which an electric current flows...Ch. 6 - 8. The law that predicts the behavior of...Ch. 6 - 9. What type of electric current is produced by...Ch. 6 - 10. The electrical resistance of a conductor is...
Ch. 6 - 11. According to Ohm’s law, what must be greater...Ch. 6 - 12. A kilowatt-hour is a unit of
a. power.
b....Ch. 6 - 13. If you multiply volts by amps, the answer will...Ch. 6 - 14. Units of joules per second are a measure...Ch. 6 - 15. A lodestone is a natural magnet that...Ch. 6 - The north pole of a suspended or floating bar...Ch. 6 - 17. A current-carrying wire always has
a. a...Ch. 6 - 18. Magnetism is produced by
a. an excess of north...Ch. 6 - 19. Earth's magnetic field
a. has undergone many...Ch. 6 - 20. The strength of a magnetic field around a...Ch. 6 - 21. Reverse the direction of a current in a wire,...Ch. 6 - 22. The operation of which of the following...Ch. 6 - Prob. 23ACCh. 6 - When a loop of wire cuts across magnetic field...Ch. 6 - 25. A step-up transformer steps up the
a....Ch. 6 - Prob. 26ACCh. 6 - 27. Electric power companies step up the voltage...Ch. 6 - 28. A solar cell
a. produces electricity...Ch. 6 - 29. Which of the following is most likely to...Ch. 6 - 30. Which of the following units are measures of...Ch. 6 - 31. You are using which description of a current...Ch. 6 - 32. In an electric current, the electrons are...Ch. 6 - 33. In which of the following currents is there no...Ch. 6 - Prob. 34ACCh. 6 - 35. A permanent magnet has magnetic properties...Ch. 6 - 36. A current-carrying wire has a magnetic field...Ch. 6 - 37. When an object acquires a negative charge, it...Ch. 6 - 38. A positive and a negative charge are initially...Ch. 6 - 39. To be operational, a complete electric circuit...Ch. 6 - 40. Which variable is inversely proportional to...Ch. 6 - 41. Which of the following is not considered to...Ch. 6 - 42. A piece of iron can be magnetized or...Ch. 6 - 43. Earth’s magnetic field is believed to...Ch. 6 - 44. Electromagnetic induction takes place...Ch. 6 - 45. The current in the secondary coil of a...Ch. 6 - 46. An electromagnet uses.
a. a magnetic field to...Ch. 6 - 47. A transformer.
a. changes the voltage of a...Ch. 6 - 48. A parallel circuit has
a. wires that are lined...Ch. 6 - 49. In which type of circuit would you expect a...Ch. 6 - 50. In which type of circuit would you expect the...Ch. 6 - 1. Explain why a balloon that has been rubbed...Ch. 6 - 2. Explain what is happening when you walk across...Ch. 6 - 3. Why does a positively or negatively charged...Ch. 6 - 4. Explain how you that it is an electric field,...Ch. 6 - 5. Is a kWh a unit of power or a unit of work?...Ch. 6 - 6. What is the difference between ac and dc?
Ch. 6 - Prob. 7QFTCh. 6 - 8. How is an unmagnetized piece of iron different...Ch. 6 - 9. Explain why the electric utility company...Ch. 6 - 10. Describe how an electric generator is able to...Ch. 6 - Prob. 11QFTCh. 6 - 12. Explain what causes an electron to move toward...Ch. 6 - 1. Explain how the model of electricity as...Ch. 6 - 2. What are the significant similarities and...Ch. 6 - 3. Transformers usually have signs warning,...Ch. 6 - 4. Will a fuel cell be the automobile engine of...Ch. 6 - 5. Analyze the apparent contradiction in the...Ch. 6 - 6. What are the basic similarities and differences...Ch. 6 - 7. What are the advantages and disadvantages of...Ch. 6 - A rubber balloon has become negatively charged...Ch. 6 - Prob. 2PEACh. 6 - Prob. 3PEACh. 6 - Prob. 4PEACh. 6 - Prob. 5PEACh. 6 - Prob. 6PEACh. 6 - Prob. 7PEACh. 6 - Prob. 8PEACh. 6 - Prob. 9PEACh. 6 - Prob. 10PEACh. 6 - Prob. 11PEACh. 6 - Prob. 12PEACh. 6 - Prob. 13PEACh. 6 - Prob. 14PEACh. 6 - Prob. 15PEACh. 6 - Prob. 16PEACh. 6 - Prob. 17PEACh. 6 - 1. An inflated rubber balloon is rubbed with a...Ch. 6 - 2. What is the force between two balloons with a...Ch. 6 - 3. How much energy is available from a 12 V...Ch. 6 - 4. A wire carries a current of 2.0 A. at what rate...Ch. 6 - Prob. 5PEBCh. 6 - 6. There is a current of 0.83 A through a...Ch. 6 - 7. What is the voltage across a 60.0 resistor with...Ch. 6 - 7. What is the voltage across a 60.0 resistor...Ch. 6 - 9. A lightbulb designed to operate in a 120.0 V...Ch. 6 - 10. What is the monthly energy cost of leaving a...Ch. 6 - 11. An electric motor draws a current of 11.5 A in...Ch. 6 - 12. A swimming pool requiring a 2.0 hp motor to...Ch. 6 - 13. Is it possible for two people to...Ch. 6 - 14. A step-up transformer has a primary coil with...Ch. 6 - 15. The step-down transformer in a local...Ch. 6 - 16. A step-down transformer connected to a 120 V...Ch. 6 - 17. What is the power of an 8.0-ohm bulb when...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forwardA point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forward
- A very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forwardTwo small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?arrow_forwardA conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a. Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?arrow_forward
- A small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.arrow_forwardA small conducting spherical shell with inner radius aa and outer radius bb is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. Calculate the magnitude of the electric field in terms of q and the distance rr from the common center of the two shells for r<a. Calculate the magnitude of the electric field for a<r<b. Calculate the magnitude of the electric field for b<r<c.arrow_forwardA cube has sides of length L = 0.800 m . It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by E→=αxi^+βzk^, where α=−3.90 and β= 7.10. What is the sum of the flux through the surface S5 and S6? What is the sum of the flux through the surface S2 and S4? Find the total electric charge inside the cube.arrow_forward
- In the figure, a proton is projected horizontally midway between two parallel plates that are separated by 0.6 cm. The electrical field due to the plates has magnitude 450000 N/C between the plates away from the edges. If the plates are 3 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field.arrow_forwardA point charge of magnitude q is at the center of a cube with sides of length L. What is the electric flux Φ through each of the six faces of the cube? What would be the flux Φ1 through a face of the cube if its sides were of length L1? Please explain everything.arrow_forwardIf a 1/2 inch diameter drill bit spins at 3000 rotations per minute, how fast is the outer edge moving as it contacts a piece of metal while drilling a machine part?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY