Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability density curve for the function Ψ 2 ( x ) = sin 2 x contains all the positive values of the given function over the whole range. Therefore, the probability density curve for the given function is, Figure 1 (b) Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is maximum on the values of x where the probability density curve has the maximum value. For the given function the value of sin x is maximum at the values x = π 2 and x = 3 π 2 . Therefore, the probability density curve for the given function has a peak at these values of x where probability of finding an electron is maximum. (c) Explanation: The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is minimum on the values of x where the probability density curve has the minimum value. For the given function the value of sin x is zero at the value of x = π . Therefore, the probability density curve for the given function has a node at this value of x where probability of finding electron is nil. Conclusion: (a) The probability density curve for the given function is as follows: (b) The values of x is maximum at x = π 2 and x = 3 π 2 . (c) The probability of finding an electron at x = π is zero and this point is called node.
Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability density curve for the function Ψ 2 ( x ) = sin 2 x contains all the positive values of the given function over the whole range. Therefore, the probability density curve for the given function is, Figure 1 (b) Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is maximum on the values of x where the probability density curve has the maximum value. For the given function the value of sin x is maximum at the values x = π 2 and x = 3 π 2 . Therefore, the probability density curve for the given function has a peak at these values of x where probability of finding an electron is maximum. (c) Explanation: The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is minimum on the values of x where the probability density curve has the minimum value. For the given function the value of sin x is zero at the value of x = π . Therefore, the probability density curve for the given function has a node at this value of x where probability of finding electron is nil. Conclusion: (a) The probability density curve for the given function is as follows: (b) The values of x is maximum at x = π 2 and x = 3 π 2 . (c) The probability of finding an electron at x = π is zero and this point is called node.
Given The wave function for the electron in one dimensional system is,
Ψ(x)=sinx
The probability density curve for the function Ψ2(x)=sin2x contains all the positive values of the given function over the whole range. Therefore, the probability density curve for the given function is,
Figure 1
(b)
Explanation:
Given The wave function for the electron in one dimensional system is,
Ψ(x)=sinx
The probability of finding electron for the given function is maximum on the values of x where the probability density curve has the maximum value. For the given function the value of sinx is maximum at the values x=π2 and x=3π2 . Therefore, the probability density curve for the given function has a peak at these values of x where probability of finding an electron is maximum.
(c)
Explanation: The wave function for the electron in one dimensional system is,
Ψ(x)=sinx
The probability of finding electron for the given function is minimum on the values of x where the probability density curve has the minimum value. For the given function the value of sinx is zero at the value of x=π . Therefore, the probability density curve for the given function has a node at this value of x where probability of finding electron is nil.
Conclusion:
(a) The probability density curve for the given function is as follows:
(b) The values of x is maximum at x=π2 and x=3π2 . (c) The probability of finding an electron at x=π is zero and this point is called node.
What is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?
Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃
Can I please get help with this?
Chapter 6 Solutions
Test Prep Series for AP Chemistry for Chemistry: The Central Science 14th ed AP
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY