A 1.25-kg wooden block rests on a table over a large hole as in Figure P6.84. A 5.00-g bullet with an initial velocity v i is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic, (b) Calculate the initial velocity of the bullet from the information provided.
A 1.25-kg wooden block rests on a table over a large hole as in Figure P6.84. A 5.00-g bullet with an initial velocity v i is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic, (b) Calculate the initial velocity of the bullet from the information provided.
Solution Summary: The author explains how the initial velocity of the bullet can be found using the conservation of momentum and conserving mechanical energy.
A 1.25-kg wooden block rests on a table over a large hole as in Figure P6.84. A 5.00-g bullet with an initial velocity vi is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic, (b) Calculate the initial velocity of the bullet from the information provided.
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.