A wooden block of mass M rests on a table over a large hole as in Figure P6.84. A bullet of mass m with an initial velocity v i , is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of h . (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic. (b) Find an expression for the initial velocity of the bullet. Figure P6.84 Problems 84 and 85.
A wooden block of mass M rests on a table over a large hole as in Figure P6.84. A bullet of mass m with an initial velocity v i , is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of h . (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic. (b) Find an expression for the initial velocity of the bullet. Figure P6.84 Problems 84 and 85.
Solution Summary: The author explains how the initial velocity of a bullet can be found using the conservation of momentum and mechanical energy.
A wooden block of mass M rests on a table over a large hole as in Figure P6.84. A bullet of mass m with an initial velocity vi, is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of h. (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic. (b) Find an expression for the initial velocity of the bullet.
You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
Chapter 6 Solutions
WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.