Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L. a. Calculate the work done, and indicate the correct sign. b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign. c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain. 7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function? a. Explain how you know that work is not a state function. b. Why does the work increase with an increase in the number of steps? c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L. a. Calculate the work done, and indicate the correct sign. b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign. c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain. 7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function? a. Explain how you know that work is not a state function. b. Why does the work increase with an increase in the number of steps? c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
Solution Summary: The author explains that the work is a path function in thermodynamics.
Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L.
a. Calculate the work done, and indicate the correct sign.
b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign.
c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain.
7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function?
a. Explain how you know that work is not a state function.
b. Why does the work increase with an increase in the number of steps?
c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
The number of imaginary replicas of a system of N particlesA) can never become infiniteB) can become infiniteC) cannot be greater than Avogadro's numberD) is always greater than Avogadro's number.
Electronic contribution to the heat capacity at constant volume
A) is always zero
B) is zero, except for excited levels whose energy is comparable to KT
C) equals 3/2 Nk
D) equals Nk exp(BE)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY