Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L. a. Calculate the work done, and indicate the correct sign. b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign. c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain. 7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function? a. Explain how you know that work is not a state function. b. Why does the work increase with an increase in the number of steps? c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L. a. Calculate the work done, and indicate the correct sign. b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign. c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain. 7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function? a. Explain how you know that work is not a state function. b. Why does the work increase with an increase in the number of steps? c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
Solution Summary: The author explains that the work is a path function in thermodynamics.
Consider 5.5 L of a gas at a pressure of 3.0 atm in a cylinder with a movable piston. The external pressure is changed so that the volume changes to 10.5 L.
a. Calculate the work done, and indicate the correct sign.
b. Use the preceding data but consider the process to occur in two steps. At the end of the first step, the volume is 7.0 L. The second step results in a final volume of 10.5 L. Calculate the work done, and indicate the correct sign.
c. Calculate the work done if after the first step the volume is 8.0 L and the second step leads to a volume of 10.5 L. Does the work differ from that in part b? Explain.
7. In Question 6 the work calculated for the different conditions in the various pans of the question was different even though the system had the same initial and final conditions. Based on this information, is work a state function?
a. Explain how you know that work is not a state function.
b. Why does the work increase with an increase in the number of steps?
c. Which two-step process resulted in more work, when the first step had the bigger change in volume or when the second step had the bigger change in volume? Explain.
10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation →
depicted below
Use proper curved arrow notation that explicitly illustrates all bonds being broken, and
all bonds formed in the transformation.
Also, be sure to include all lone pairs and formal charges on all atoms involved in the
flow of electrons.
CH3O
II
HA
H
CH3O-H
H
①
Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.
NGLISH
b)
Identify the bonds present in the molecule drawn (s) above.
(break)
State the function of the following equipments found in laboratory.
Omka)
a) Gas mask
b) Fire extinguisher
c) Safety glasses
4.
60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w
80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions
(S-32.0.0-16.0)
(3 m
5.
In an experiment, a piece of magnesium ribbon was cleaned with steel w
clean magnesium ribbon was placed in a crucible and completely burnt in oxy
cooling the
product weighed 4.0g
a)
Explain why it is necessary to clean magnesium ribbon.
Masterclass Holiday assignmen
PB 2
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY