
(a)
The work required to lift the box.
(a)

Answer to Problem 6SP
The work required to lift the box is
Explanation of Solution
Given info: The weight of the box is
Write the expression for work done when force applied force and the displacement are in the same direction.
Here,
Since the weight of the box is
Substitute
Conclusion:
Therefore, the work required to lift the box is
The amount of work required to push the box up the ramp.

Answer to Problem 6SP
The amount of work required to push the box up the ramp is
Explanation of Solution
Given info: The length of the ramp is
Since the component of the weight (gravitational force) along the ramp is
Substitute
Conclusion:
Therefore, the amount of work required to push the box up the ramp is
(c)
Which among the situations, pushing up the ramp or lifting straight up required more work.
(c)

Answer to Problem 6SP
The amount of work required for both pushing up the ramp and lifting straight up are the same.
Explanation of Solution
The word work defines an activity involving mental or physical health but in physics it is defined as the force causing movement or displacement of an object. The SI unit of work is Joule.
If the force and distance moved are in same direction, then the work is the applied force multiplied by the distance object moves. The work done by a given force is the product of the component of the force along the line of motion of the object multiplied by the distance that the object moves under the influence of the force.
From part (a) it is obtained that the work required to lift the box straight up is
Conclusion:
Therefore, the amount of work required for both pushing up the ramp and lifting straight up are the same.
(d)
Which among the situations, pushing up the ramp or lifting straight up requires more force.
(d)

Answer to Problem 6SP
Lifting the box straight up requires more force than pushing it up the ramp.
Explanation of Solution
The capacity to make a physical change or to do work is known as force. The work done by a given force is the product of the component of the force along the line of motion of the object multiplied by the distance that the object moves under the influence of the force.
Since the gravitational force over the box is
Conclusion:
Therefore lifting the box straight up requires more force than pushing it up the ramp.
(e)
Which among the situations, pushing up the ramp or lifting straight up, the distance moved is greater.
(e)

Answer to Problem 6SP
The distance moved is greater in pushing the box up the ramp than that in lifting the box straight up.
Explanation of Solution
The word work defines an activity involving mental or physical health but in physics it is defined as the force causing movement or displacement of an object.
By definition, the work done by a force is equal to the product of force and the displacement of the object in the direction of application of force. If work done in two situations are equal, the situation in which more force is applied will have smaller displacement of the object on which the force is acting.
In both the given situations, the work done is same. From part (d) the force required is greater in lifting the box straight up. This implies force is applied over a long distance when the box is pushed up the ramp.
Conclusion:
Therefore the distance moved is greater in pushing the box up the ramp than that in lifting the box straight up.
(f)
The change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp.
(f)

Answer to Problem 6SP
The change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp is
Explanation of Solution
Given info: The height of the final position of the box is
Since the same box is considered in both the situations, the mass is same.
Write the expression gravitational force on the object.
Here,
Substitute
Write the expression for the change in gravitational potential energy.
Here,
Since in both processes, the box is moved from the initial ground level to a final height of
Substitute
Thus, the change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp is
Conclusion:
Thus the change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp is
(g)
The advantage of using the ramp to move the box.
(g)

Answer to Problem 6SP
When the ramp is used to move the box to the given height, less force is required than lifting it straight up to the height and hence the strength of the person doing work can be conserved using the ramp.
Explanation of Solution
Work defines an activity involving mental or physical health but in physics it is defined as the force causing movement or displacement of an object. The work done by a given force is the product of the component of the force along the line of motion of the object multiplied by the distance that the object moves under the influence of the force.
When the box has to be lifted straight up, the person has to work against the complete gravitational attraction on the box or against the weight of the box. But when ramp is used work has to be done against only the component of the weight of the box along the ramp.
As obtained in the calculations, the force required to move the box to the final position is
Conclusion:
Thus when the ramp is used to move the box to the given height, less force is required than lifting it straight up to the height and hence the strength of the person doing work can be conserved using the ramp.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- Don't use ai to answer I will report you answerarrow_forwardwhy did the expert subtract the force exerted by the hand and the elbow by the force due to the weight of the hand and forearm and force exerted by the tricep. Does the order matter and how do you determine what to put first. Question 4 AP, CHAPTER 13 FROM BASIC BIOMECHANICS 8TH EDITIONarrow_forwardThe drawing illustrates the dispersion of light by a prism. The prism is made from a certain type of glass, and has a cross section shaped like an equilateral triangle. The indices of refraction for the red and violet light in this type of glass are 1.649 and 1.694, respectively. The angle of incidence for both the red and violet light is 60.0°. Find the angles of refraction at which the (a) red and (b) violet rays emerge into the air from the prism. Glass prism Incident light Normal (a) Normal Incident light Red (660 nm) (b) Violet (410 nm)arrow_forward
- Don't use ai to answer I will report you answerarrow_forwardA glass block (n = 1.56) is immersed in a liquid. A ray of light within the glass hits a glass- liquid surface at a 70.0° angle of incidence. Some of the light enters the liquid. What is the smallest possible refractive index for the liquid?arrow_forwardThe drawing shows a crystalline slab (refractive index 1.995) with a rectangular cross section. A ray of light strikes the slab at an incident angle of 01 = 35.0°, enters the slab, and travels to point P. This slab is surrounded by a fluid with a refractive index n. What is the maximum value of n such that total internal reflection occurs at point P? Ме Buarrow_forward
- What is the amount of M112 needed to breach a 5-foot thick dense concrete wall utilizing an internal charge placed in the center of the target?arrow_forwardA small postage stamp is placed in front of a concave mirror (radius = 1.1 m), such that the image distance equals the object distance. (a) What is the object distance? (b) What is the magnification of the mirror (with the proper sign)?arrow_forwardCalculate the anti-clockwise torque and the clockwise torque of the system with the ruler and the washers. Record these values in Data Table 5. Ruler = 11.56 g, small washer = 1.85 g, large washer = 24.30 g. Calculate the % Difference in the Torques and record the values in Data Table 5. Is ΣAnticlockwise torque and Anticlockwise torque the same thing, are they solved in the same way?arrow_forward
- A window washer stands on a uniform plank of mass M = 142 kg and length l = 2.80 m supported by 2 ropes attached at the ends of the plank. The window washer has a mass m = 68.0 kg. What is the tension in each of the ropes, T1 and T2, if the window washer's displacement from the center of mass of the plank is x = 0.930 m as shown in Figure 1: Window Washer Problem?arrow_forwardA man holds a double-sided spherical mirror so that he is looking directly into its convex surface, 33 cm from his face. The magnification of the image of his face is +0.17. What will be the image distance when he reverses the mirror (looking into its concave surface), maintaining the same distance between the mirror and his face? Be sure to include the algebraic sign (+ or -) with your answer.arrow_forwardHow do you draw a diagram of the ruler and mass system in equilibrium identifying the anti-clockwise torque and clockwise torque? How do I calculate the anti-clockwise torque and the clockwise torque of the system with the ruler and the washers, does it come from the data in table 4? Please help, thank you!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





