
The theoretical amount of methane gas produced by anaerobic decomposition.

Answer to Problem 6.6P
The amount of methane gas produced by anaerobic decomposition is
Explanation of Solution
Given:
Amount of material placed in landfill is
Calculation:
Calculate the amount of glucose.
Here, the amount of glucose in the land fill is
Substitute
Write the equation for the methane production from glucose.
Here, the stoichiometric constants are
The organic considered is glucose whose chemical formula is
Calculate the values of
Substitute
Write the expression to calculate the moles of methane produced from glucose.
Here, the moles of methane produced from glucose is
Substitute
Calculate the amount of cellulose.
Here, the amount of cellulose in the land fill is
Substitute
Write the equation for the methane production from cellulose.
Since, the organic considered is cellulose whose chemical formula is
Calculate the values of
Substitute
Write the expression to calculate the moles of methane produced from cellulose.
Here, the moles of methane produced from cellulose is
Substitute
Write the expression to calculate the methane produced from cellulose.
Here, the number of moles of methane produced from cellulose is
Substitute
Write the expression to calculate the methane produced from glucose.
Here, the number of moles of methane produced from glucose is
Substitute
Calculate the total methane produced.
Here, the total theoretical methane produced is
Substitute
Conclusion:
Thus, the total theoretical methane produced is
Want to see more full solutions like this?
Chapter 6 Solutions
Solid Waste Engineering
- 8-42. Determine the displacement at point D. Use the principle of virtual work. El is constant. 60 kN 2m- 2 m B 30 kN/m 3 marrow_forwardTwo monitoring wells are spaced 500 m apart along the direction of groundwater flow in a confined aquifer 30.0 m thick. The difference in water level in the wells is 2.5 m. The hydraulic conductivity is 40 m/d. a) Sketch the aquifer and wells and label distances and direction of groundwater flow. b) If the real velocity of the groundwater is 0.6 m/d, what is the porosity? c) If it takes 10 years for a petroleum hydrocarbon plume to appear in the second well, what was the retardation factor?arrow_forward9. 0000) Water in a lake contains 10.5 ppb of vinyl chloride, which has a potency factor of 2.3 (mg/kg-d) 1 a. What is the incremental cancer risk for children (average weight of 15 kg) who may ingest 0.05 L of water per day while playing in the water every summer (for approximately 60 days) for 10 years? b. Is this risk acceptable? Why or why not?arrow_forward
- 8-37. Determine the displacement of point C. Use the method of virtual work. El is constant. -12 ft- 3 k/ft -12 ft- Barrow_forward6. If the initial DO concentration of a diluted (1/50) wastewater sample is 9.0 mg/L and the UO concentration decreases to 2.4 mg/L after 5 days of incubation, a. calculate the 5-day BOD concentration in mg/L: b. If the wastewater degrades at a rate of 0.22/day, what is the ultimate BOD concentration? c. Based on the k value in part (b), what would the BOD concentration be after 10 days? d. What other factor may influence the BOD that is not accounted for in part (c)?arrow_forward2nYour consulting firm is doing an expansion project for a drinking water treatment plant in a growing urban area that has a current population of 55,000 people and treats 20 MGD. If there is 2.8% population growth, continuously compounded, and you want the expansion to be able to serve the urban area for the 35 year design life of the upgraded facility, what should the new design capacity (in MGD) of the treatment plant be?arrow_forward
- can you show me step for step?arrow_forwardHow many steel studs are needed in total ? (Exterior walls are exsisting) Studs are spaced 16” OC Add 2 studs x each door & intersection How many 4 x 8 drywall sheets are required if walls are 8 ft high Exterior walls only need drywall on interior side Interior walls need drywall on both sides Show all workarrow_forwardanswer on paper and make sure work is done step by step correctly and neatlyarrow_forward
- Ex 11: Design inlet system for the road in figure below with catchment area=86 m*239 m. C=0.8, i=100 mm/hr, Gutter data: y max.=8cm, n=0.018, k=0.38, slope=%1, Z=25, %25 clogging, (space=bar=2 cm). Inlet type used (consists of tow part curb and Q grad inlet =0.6Qgutter max. grade inlet) Q curb inlet =0.4Qgutter max. 0.8*100 3600*1000 Solution: (Qs) Total=CIA= Qgutter (Max.)=k²√√s y8/3 = 0.38- 25 0.018 *(86*239)=0.457 m³/s √0.01 0.088/3= 0.0627 m³/s 30 m 12 m 2mL 12 m 30 m Residence 30 m Streat 12 m Bof 2 m ㅈ 239 m A2 A1arrow_forward(20 02 A concrete beam of rectangular cross-section (300 x 400) mm is Prestressed with wires located at (30) mm from the top of the beam .The wires are initially tensioned to 0-6 mm) diameter wires at (100) mm from the soffit of the beam and (5-6 mm) a stress of (900 N/mm²). Compute the percentage loss of stress in steel after transfer due to elastic deformation of concrete. Given: Es=200 x 103 N/mm², Ec = 25 x 10³ N/mm². 300 за 60000 400 100 546 2046arrow_forwardReinforced Concrete Design First Monthly Exam 24/02/2 Q1. A simply supported rectangular beam (300 x 400) mm and span (12) m with live load of from the soffit of the beam. Compute the stresses at mid-span of beam for the following (5 kN/m). At the centre of the beam the prestressing force of (120) kN is located at (50 mm) conditions: (a) Prestress + self- weight of beam (initial stage). (b) Prestress + self- weight of beam + Live Load (service stage). 3:00 400 120 K * 12m 5kN/m. 120 KNarrow_forward
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning





