
Concept explainers
(a)
The terminal speed for water droplets falling under their own weight in air for the drop radii equal to
(a)

Answer to Problem 6.69CP
The terminal speed for water droplets falling under their own weight in air for the drop radii equal to
Explanation of Solution
Given info: The expression of magnitude of resistive force exerted on a sphere is
The expression of the resistive force is,
Here,
Substitute
The expression of mass of the water droplet is,
Here,
The expression of volume of the water droplet is,
Substitute
Substitute
Thus, the mass of the water droplet is
The expression of force that acts on the water droplet is,
Here,
Compare and equate the equation (1) and the above equation.
Substitute
The contribution of the second term of
Conclusion:
Therefore, the terminal speed for water droplets falling under their own weight in air for the drop radii equal to
(b)
The terminal speed for water droplets falling under their own weight in air for the drop radii equal to
(b)

Answer to Problem 6.69CP
The terminal speed for water droplets falling under their own weight in air for the drop radii equal to
Explanation of Solution
Given info: The expression of magnitude of resistive force exerted on a sphere is
From equation (1) the expression of resistive force is,
The expression of volume of the water droplet is,
Substitute
From equation (2), the expression of mass of the water droplet is,
Substitute
From equation (3) the final equation is,
Substitute
Further solve the above equation.
Apply quadratic formula to solve the above equation.
Conclusion:
Therefore, the terminal speed for water droplets falling under their own weight in air for the drop radii equal to
(c)
The terminal speed for water droplets falling under their own weight in air for the drop radii equal to
(c)

Answer to Problem 6.69CP
The terminal speed for water droplets falling under their own weight in air for the drop radii equal to
Explanation of Solution
Given info: The expression of magnitude of resistive force exerted on a sphere is
From equation (1) the expression of resistive force is,
The expression of volume of the water droplet is,
Substitute
From equation (2), the expression of mass of the water droplet is,
Substitute
From equation (3) the final equation is,
Substitute
The contribution of the first term of
Conclusion:
Therefore, the terminal speed for water droplets falling under their own weight in air for the drop radii equal to
Want to see more full solutions like this?
Chapter 6 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
- Identical rays of light enter three transparent blocks composed of different materials. Light slows down upon entering the blocks.arrow_forwardFor single-slit diffraction, calculate the first three values of (the total phase difference between rays from each edge of the slit) that produce subsidiary maxima by a) using the phasor model, b) setting dr = 0, where I is given by, I = Io (sin (10) ². 2arrow_forwardA capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H . (D)What is the charge on the capacitor 0.0235 s after the connection to the inductor is made? Interpret the sign of your answer. (e) At the time given in part (d), what is the current in the inductor? Interpret the sign of your answer. (f) Atthe time given in part (d), how much electrical energy is stored in the capacitor and how much is stored in the inductor?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





