
Concept explainers
A 9.00-kg object starting from rest falls through a viscous medium and experiences a resistive force given by Equation 6.2. The object reaches one half its terminal speed in 5.54 s. (a) Determine the terminal speed. (b) At what time is the speed of the object three-fourths the terminal speed? (c) How far has the object traveled in the first 5.54 s of motion?
(a)

The terminal speed of the object.
Answer to Problem 6.65CP
The terminal speed of the object is
Explanation of Solution
The mass of the object is
Write the expression for the terminal speed of the object
Here,
Write the expression for the speed of the object at an instant of time
Here,
From the given condition, it is clear that the speed of the object is one half of its terminal speed at
Substitute
Further solve the above expression.
Substitute
Conclusion:
Substitute
Therefore, the terminal speed of the object is
(b)

The time at which the speed of the object is three-fourth of the terminal speed.
Answer to Problem 6.65CP
The time at which the speed of the object is three-fourth of the terminal speed is
Explanation of Solution
From the given condition, it is clear that the speed of the object is three-fourth of its terminal speed.
Substitute
Rearrange the above expression for
Conclusion:
Substitute
Therefore, the time at which the speed of the object is three-fourth of the terminal speed is
(c)

The distance travelled by the object in first
Answer to Problem 6.65CP
The distance travelled by the object in first
Explanation of Solution
Write the expression for the speed of an object
Here,
Rearrange the above expression for
Recall equation (II)
Substitute
Conclusion:
Substitute
Therefore, the distance travelled by the object in first
Want to see more full solutions like this?
Chapter 6 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





