FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
pls answer the given thanks
A 60-lb aluminum bar, initially at T3 = 150°F, is placed in a tank together with 190 lb of liquid water, initially at Tw = 70°F, and allowed
to achieve thermal equilibrium. The aluminum bar and water can be modeled as incompressible with specific heats c, = 0.216
Btu/lb-°R and Cw = 0.998 Btu/lb-°R, respectively. Consider the aluminum bar and water as the system and ignore heat transfer
between the system and its surroundings.
Determine the final temperature Tr, in °F, and the amount of entropy produced within the tank, in Btu/°R.
3. Air is contained within a piston-cylinder assembly The cross sectional area of the piston is 0.01 m².
Initially the piston is at 1 bar and 25°C, 10 cm above the base of the cylinder. In this state, the spring exerts
no force on the piston. The system is then reversibly heated to 100°C. As the spring is compressed, it
exerts a force on the piston according to: F=-kx where k= 50,000 N/m and x is the displacement length from
its uncompressed position. Determine the work done.
a. -166 J
b. -216 J
c. 166 J
d. 216 J
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The entropy change of a system can be negative, but the entropy generation cannot.arrow_forwardCalculate the amount of work necessary for the reversible compression of steam from 1 bar to 10 bar. The compression is to take place in a cylinder fitted with a weightless piston at the constant temperature of 500 oC. Under these conditions we have a superheated vapor. Assume that steam may be treated as an ideal gas. Report your answer in units of kJ/kg using three decimal places. For conversion, note that the molar mass of water is 18.015 g/mol.arrow_forwardA gas undergoes isobaric expansion at 0.05 bar from 0.1 m³ to 1.0 m³ when 2.0 KiloJoules of heat is applied to it. Which of the following is true regarding the work, heat and the change in internal energy involed in this change (all quantities in KiloJoules)? A. +4.5, -2.0, +2.5 B. -4.5, +2.0, -2.5 C. +4.5, +2.0, +6.5 D. -4.5, -2.0, -6.5arrow_forward
- An ideal gas with R=0.062 BTU/lbm-R and Cv=0.158 BTU/lbm-R undergoes a three-cycle in a closed system. From the initial state of 20 psia and 570 R, the gas is compressed at a constant temperature of 1/5 of its initial volume, process 1-2; it is then heated isochorically to state 3, process 2-3; and finally, expands polytropically with index n=1.5 back to its initial state, process 3-1. Determine the pressures, specific volumes and temperatures at cardinal points around the cycle and the cycle thermal efficiency.arrow_forwardBernoulli's principle is an example of which law of thermodynamics. Explain why?arrow_forwardConsider a piston-cylinder assembly containing 10.0 kg of water. Initially, the gas has a pressure of 20.0 bar and occupies a volume of 1.0 m3. The system undergoes a reversible process in which it is compressed to 100 bar. The pressure volume relationship during this process is given by: PV1.5 = constant. (a) What is the initial temperature? (b) Calculate the work done during this process. (c) Calculate the heat transferred during this process. (d) What is the final temperature?arrow_forward
- Two perfect gas systems undergo reversible expansion under different conditions starting from the same P and V. At the end of the expansions, the two systems have the same volume. The pressure in the system that has undergone adiabatic expansion is lower than in the system that has undergone isothermal expansion. Explain this result without using equations.arrow_forwardFor irreversible adiabatic expansion or compression of an ideal gas, work is equal to the internal energy change. Select one: True Falsearrow_forwardA divider separates 1 lb mass of carbon monoxide (CO) from a thermal reservoir at 150o F. the carbon monoxide, initially at 60o F and 150 lbf/in2, expands isothermally to a final pressure of 10 lbf/in2 while receiving heat transfer through the divider from the reservoir. The carbon monoxide can be modeled as an ideal gas. (a) For the carbon monoxide as the system, evaluate the work and heat transfer, each in Btu and the amount of entropy produced, in Btu/oR. (b) Evaluate the entropy production, in Btu/oR, for an enlarged system that includesthe carbon monoxide and the divider, assuming the state of the divider remains unchanged. Compare with the entropy production of part (a) and comment on the difference.arrow_forward
- 0.05 kg of a certain gas in a piston and cylinder is compressed reversibly until the pressure reaches 0.615 MPa. The initial pressure and volume were 0.1025 MPa and 0.03 m3 respectively. Determine the final temperature, the work done on the gas, the heat flow to or from the cylinder walls. i) When the process is according to law PV1.4 = C, ii) When the process is isothermal. (the molecular weight of a certain gas is 44 and y = 1.3).arrow_forwarda=2, f=3 A vertical "2a" cm diameter piston-cylinder device contains an unknown ideal gas at 1 bar and 24 "C. Initially, the inner face of the piston is “4P" cm from the base of the cylinder. The air in system undergoes an internally reversible compression process with a boundary work of “1.f" kJ. The temperature of the gas remains constant during this process. If the molecular weight of the unknown gas is 27 kg/kmol, determine; a) the amount of heat transfer during the process, in kJ, and comment about its direction b) the final pressure of air in the cylinder, in kPa c) the entropy change during the process, in kj/K d) draw P-v and T-s graph in detail. D Larrow_forwardA fluid at pressure of 3 bar, and with specific volume 0.18 m^3/kg, contained in a cyclinder behind a piston that expands reversibly to a pressure of 0.6 bar according to a law: p= C/v², where c is a constant. Show the expansion process on p-V diagram and calculate the net work done by the fluid on the piston.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license