FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Identify the working substance, specify the kind of system and sketch the system boundary.
PLEASE ANSWER it in 1hr.
3. Air is contained within a piston-cylinder assembly The cross sectional area of the piston is 0.01 m².
Initially the piston is at 1 bar and 25°C, 10 cm above the base of the cylinder. In this state, the spring exerts
no force on the piston. The system is then reversibly heated to 100°C. As the spring is compressed, it
exerts a force on the piston according to: F=-kx where k= 50,000 N/m and x is the displacement length from
its uncompressed position. Determine the work done.
a. -166 J
b. -216 J
c. 166 J
d. 216 J
I need the answer as soon as possible
Knowledge Booster
Similar questions
- A divider separates 1 lb mass of carbon monoxide (CO) from a thermal reservoir at 150o F. the carbon monoxide, initially at 60o F and 150 lbf/in2, expands isothermally to a final pressure of 10 lbf/in2 while receiving heat transfer through the divider from the reservoir. The carbon monoxide can be modeled as an ideal gas. (a) For the carbon monoxide as the system, evaluate the work and heat transfer, each in Btu and the amount of entropy produced, in Btu/oR. (b) Evaluate the entropy production, in Btu/oR, for an enlarged system that includesthe carbon monoxide and the divider, assuming the state of the divider remains unchanged. Compare with the entropy production of part (a) and comment on the difference.arrow_forwardA 60-lb aluminum bar, initially at T3 = 150°F, is placed in a tank together with 190 lb of liquid water, initially at Tw = 70°F, and allowed to achieve thermal equilibrium. The aluminum bar and water can be modeled as incompressible with specific heats c, = 0.216 Btu/lb-°R and Cw = 0.998 Btu/lb-°R, respectively. Consider the aluminum bar and water as the system and ignore heat transfer between the system and its surroundings. Determine the final temperature Tr, in °F, and the amount of entropy produced within the tank, in Btu/°R.arrow_forwardThe entropy change between two specified states is the same whether the process is reversible or irreversible.arrow_forward
- One-quarter Ibmol of oxygen gas (O₂) undergoes a process from p₁ = 20 lbf/in², T₁ = 500°R to p₂ = 150 lb/in². For the process W = -500 Btu and Q = -202.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forwardEquations of State for a gas;P.v = 0.004 (T + 273)U=U0+1,2 Tgiven in the form. In equations P: bar, v: m3/kg, U: kj / kg, t: C. Becomingthe initial volume of a piston cylinder system filled with gas,whose equations are given, is 0, 02m3, its temperature is 90 C, and its pressure is 4 bar. When the gas expands to a lower pressure,the work that the gas does is 3 kJ, and the heat that passes into the environment is 1.9 kJ. What is the final temperature of the gas?arrow_forwardA 60-lb aluminum bar, initially at T₂ = 150°F, is placed in a tank together with 190 lb of liquid water, initially at Tw= 70°F, and allowed to achieve thermal equilibrium. The aluminum bar and water can be modeled as incompressible with specific heats c₂ = 0.216 Btu/lb.ºR and cw = 0.998 Btu/lb.°R, respectively. Consider the aluminum bar and water as the system and ignore heat transfer between the system and its surroundings. Determine the final temperature Tf, in °F, and the amount of entropy produced within the tank, in Btu/°R.arrow_forward
- For any irreversible process the net entropy change is Zero positive O negative O infinite O unity Oarrow_forward(1.3) Suppose a process increases Gibbs free energy of a system coupled to both a heat bath and volume reservoir, i.e., AG > 0. What does that tell you about the system's coupling to work reservoirs? Explain. Answer:arrow_forwardA 300-lb iron casting, initially at 1050°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. Tf = i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. O = i Btu/°R Touthoolk ond Mediearrow_forward
- solve the following problem: Steam enters a turbine operating at steady state at 850oF and 450 lbf/in2 and leaves as a saturated vapor at 1.4 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.arrow_forwardIdentify the working substance, specify the kind of system and sketch the system boundary. Please answer it in 1hr.arrow_forwardWhere can I apply solving matrices in thermodynamics?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY