(a)
The slope of the straight line, including units.
(a)
Answer to Problem 6.49AP
The slope of the straight line is
Explanation of Solution
From the Figure, the terminal speed of the filters is
Formula to calculate the slope is,
Substitute
Conclusion:
Therefore, the slope of the straight line is
(b)
The theoretical slope of a graph of resistive force versus squared speed.
(b)
Answer to Problem 6.49AP
The theoretical slope of a graph of resistive force versus squared speed is
Explanation of Solution
Given info:
The expression for the resistive force is,
Here,
Formula to calculate the slope is,
Substitute
Conclusion:
Therefore, the theoretical slope of a graph of resistive force versus squared speed is
(c)
The drag coefficient of the filters.
(c)
Answer to Problem 6.49AP
The drag coefficient of the filters is
Explanation of Solution
Given info: Radius of the circle is
Formula to calculate the area of the circle is,
Here,
Substitute
Thus, the area of the circle is
Formula to calculate the drag coefficient is,
Here,
Substitute
Conclusion:
Therefore, the drag coefficient of the filters is
(d)
The vertical separation from the line best fit for the eight data point.
(d)
Answer to Problem 6.49AP
The vertical separation from the line best fit for the eight data point is
Explanation of Solution
Given info:
Form the Figure (1), the force at point 8 in the graph, the mass off the coffee is
Formula to calculate the force at point 8 is,
Substitute
The terminal speed of the filters is
The vertical separation from the line best fit for the eight data point is,
Conclusion:
Therefore, the vertical separation from the line best fit for the eight data point is
(e)
The explanation for what graph explains and compare it with the theoretical prediction.
(e)
Answer to Problem 6.49AP
The graph for the coffee filter falling in air at terminal speed shows the resistance force is a function of the terminal speed squared which gives the air resistance.
Explanation of Solution
Given info:
The drag coefficient of the filters is
Thus, the constant slope of the graph is,
The graph for the coffee filter falling in air at terminal speed shows the resistance force is a function of the terminal speed squared which gives the air resistance.
The expression for the resistive force is,
From this given expression,
Thus, the graph of the resistive force is directly proportional to the terminal speed squared.
Conclusion:
Therefore, the graph for the coffee filter falling in air at terminal speed shows the resistance force is a function of the terminal speed squared which gives the air resistance.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 5 C01: Physical Quantities, Units and Measurements 4 Complete the table by stating a suitable instrument for obtaining each of the following lengths to be measured. (6) Length to be measured (a) 12.0 cm (b) 8.880 mm (c) 4.440 cm (d) (e) internal diameter of a test tubes bas thickness of a wire (f) height of a bedroom Suitable Instrument 5 Fill in the blanks by making estimates of each of the following quantities. [5] (a) The thickness of a sheet of paper = mm (b) The time for one heartbeat = (c) The mass of 500 cm3 of water = S g (d) The height of a 4-year-old = 3 (e) The average human reaction time S hoda 6 A student has a stack of 20 identical coins. The following diagram shows the student measuring the height of the stack using a rule.uis en cm 15. 10 7 eye (6) ream of (3) emuntani na mBM (0) 5. stack of 20 coins 0 (b) With his eye at the position shown, the student's measurement of the height of the stack is 6.8 cm. (a) Suggest two reasons why the student's measurement is…arrow_forwardoutside the theory of evolution, the spontaneous emergence of complexity and information from randomness is not recognized in nature. true or falsearrow_forwardNo chatgpt pls will upvotearrow_forward
- 2. Max is swimming across a river that is 42.6 m wide. He can swim at 1.6 m/s and heads 20° to the right of the vertical. There is a current pushing him more to the right and it has a speed of 0.30 m/s. Determine the time it takes him to cross the river and find out how far downstream he ends up. Draw the diagram.arrow_forwardpls help asaparrow_forwardpls help asaparrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax