
(a)
Interpretation:
The units of surface tension
Concept introduction:
The Gibbs free energy is the
(a)

Answer to Problem 6.46E
The units of surface tension
Explanation of Solution
At constant pressure and temperature, the equation is represented as shown below.
The unit of surface tension is calculated as follows:
Hence, the units of surface tension is
The units of surface tension
(b)
Interpretation:
The equation 6.26 is to be verified by taking the derivative of
Concept introduction:
The Gibbs free energy is the thermodynamic quantity that defines the available energy in the system. It is used to describe the spontaneity of the chemical reaction.
(b)

Answer to Problem 6.46E
Explanation of Solution
The volume of the spherical droplet is
Thus, the value of
The area of the spherical droplet is
Thus, the value of
The equation 6.16 is given below.
Where,
•
•
Substitute the value of
Thus, the value of
Similarly, substitute the value of
Thus, the value of
Hence, the equation 6.26 is verified by taking the derivation of
The equation 6.26 is verified by taking the derivation of
(c)
Interpretation:
The new equation in terms of
Concept introduction:
The Gibbs free energy is the thermodynamic quantity that defines the available energy in the system. It is used to describe the spontaneity of the chemical reaction.
(c)

Answer to Problem 6.46E
The new equation in terms of
Explanation of Solution
The equation 6.16 is given below.
Where,
•
•
At constant pressure and temperature, the equation is represented as shown below.
Substitute the value of
Hence, the new equation in terms of
The new equation in terms of
(d)
Interpretation:
Whether a large droplet radius or a small droplet radius contributes to a large
Concept introduction:
The Gibbs free energy is the thermodynamic quantity that defines the available energy in the system. It is used to describe the spontaneity of the chemical reaction.
(d)

Answer to Problem 6.46E
The small droplet radius contributes to a large
Explanation of Solution
The spontaneous change in phase is accompanied by a positive value of
The small droplet radius contributes to a large
(e)
Interpretation:
The droplet which evaporates faster is to be predicted.
Concept introduction:
The Gibbs free energy is the thermodynamic quantity that defines the available energy in the system. It is used to describe the spontaneity of the chemical reaction.
(e)

Answer to Problem 6.46E
The small droplet evaporates faster because at this stage the
Explanation of Solution
Evaporation is a process in which the water molecule at the surface evaporates and converts into gas phase.
The size of the droplet decreases when it evaporates. Thus, the value of
The small droplet evaporates faster because at this stage the value of
(f)
Interpretation:
The validation of the method of delivery of many perfumes and colognes via so-called atomizers is to be explained.
Concept introduction:
The Gibbs free energy is the thermodynamic quantity that defines the available energy in the system. It is used to describe the spontaneity of the chemical reaction.
(f)

Answer to Problem 6.46E
The small droplets have tendency to move faster and diffuses the perfumes and colognes via so-called atomizers over a large area.
Explanation of Solution
The atomizers are the devices that emit a liquid into a large area. The small droplets evaporate faster than the large droplets. Thus, the small droplets have the tendency to move faster. Hence, the small droplets produced by the perfume will diffuse over a large area.
The small droplets have tendency to move faster and diffuse the perfumes and colognes via so-called atomizers over a large area.
Want to see more full solutions like this?
Chapter 6 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Predict the organic products that form in the reaction below, and draw the skeletal ("line") structures of the missing organic products. Please include all steps & drawings & explanations.arrow_forwardWhat are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forwardWhat are the products of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forward
- What would happen if you added the HCI to the Grignard reagent before adding benzophenone? Draw a reaction mechanism to support your answer.arrow_forwardAt 300 K, in the decomposition reaction of a reactant R into products, several measurements of the concentration of R over time have been made (see table). Calculate the order of the reaction. t/s [R]/ (mol L-1) 0 0,5 171 0,16 720 0,05 1400 0,027arrow_forwardWrite the correct IUPAC names of the molecules in the picturearrow_forward
- How many grams of solid NaCN have to be added to 1.5L of water to dissolve 0.18 mol of Fe(OH)3 in the form Fe(CN)63 - ? ( For simplicity, ignore the reaction of CN - ion with water) Ksp for Fe(OH)3 is 2.8E -39, and Kform for Fe(CN)63 - is 1.0E31arrow_forwardDraw the most stable chair conformation of 1-ethyl-1-methylcyclohexane, clearly showing the axial and equatorial substituents. [4] Draw structures corresponding to the following IUPAC name for each of the following compounds; [5] i) 4-Isopropyl-2,4,5-trimethylheptane ii) trans-1-tert-butyl-4-ethylcyclohexane iii) Cyclobutylcycloheptane iv) cis-1,4-di-isopropylcyclohexane (chair conformation) v) 3-Ethyl-5-isobutylnonanearrow_forwardDraw and name molecules that meet the following descriptions; [4] a) An organic molecule containing 2 sp2 hybridised carbon and 1 sp-hybridised carbon atom. b) A cycloalkene, C7H12, with a tetrasubstituted double bond. Also answer question 2 from the imagearrow_forward
- H 14. Draw the line angle form of the following molecule make sure you use the proper notation to indicate spatial positioning of atoms. F F H 15. Convert the following condensed form to line angle form: (CH3)3CCH2COCH2CON(CH2CH3)2arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both only if(A) the stoichiometry A:B is 1:1.(B) the stoichiometry A:B is 1:2 or 2:1.arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both.(1) Only if the stoichiometry A:B is 1:1.(2) If the initial quantities of A and B are in their stoichiometric ratios.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





