(a)
Interpretation:
The formation of following solutions should be explained:
500.0 mL of a 5.32 % w/w
Concept Introduction:
Concentration has several ways to be calculated. It typically relates an amount of solute and the solution. In mass of solute per unit mass of solvent, or w/w, the total mass of the solute, solvent and solution must be known.
The formula for w/w is as follows:
Here,
When solving for the required amount of solute, the following formula is used:
Answer to Problem 6.34P
Explanation of Solution
Given Information:
The concentration is shown as w/w meaning this is mass of solute per mass of solvent.
Since, density of water is 1 g/mL thus, 500 mL of water contains 500 g of water. Substitute known data and solve for mass of solute.
Thus,
(b)
Interpretation:
The formation of following solutions should be explained:
342.0 mL of a 0.443 % w/w benzene solution in toluene.
Concept Introduction:
Concentration has several ways to be calculated. It typically relates an amount of solute and the solution. In mass of solute per unit mass of solvent, or w/w, the total mass of the solute, solvent and solution must be known.
The formula for w/w is as follows:
Here,
When solving for the required amount of solute, the following formula is used:
(b)
Answer to Problem 6.34P
Explanation of Solution
Given Information:
The concentration is shown as w/w meaning this is mass of solute per mass of solvent.
In this specific case, we do not know which volume or mass each material is, but we do know which one the solvent is, toluene.
Now, get the total volume equation.
Solve simultaneously.
Then, add
(c)
Interpretation:
The formation of following solutions should be explained:
125.5 mL of a 34.2 % w/w dimethyl sulfoxide solution in acetone.
Concept Introduction:
Concentration has several ways to be calculated. It typically relates an amount of solute and the solution. In mass of solute per unit mass of solvent, or w/w, the total mass of the solute, solvent and solution must be known.
The formula for w/w is as follows:
Here,
When solving for the required amount of solute, the following formula is used:
Answer to Problem 6.34P
Explanation of Solution
Given:
In this specific case, we do not know which volume or mass each material is, but we do know which one is the solvent that is acetone.
Now, get the total volume equation.
Solve simultaneously.
Then, add
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- Benzene-toluene equilibrium is often approximated as αBT = 2.34. Generate the y-x diagram for this relative volatility. Also, generate the equilibrium data using Raoult’s law, and compare your results to these. post excel spreadsheet w values used to generate both graphsarrow_forwardConvert the following structures to skeletal structures: a. CH3CH2CH2CH2COOH b. CH3CH2OCH2 Br C. CH2CHCHCHCCCHCH2arrow_forwardConvert the following structures to condensed structures: OH a. b. Cl C. Harrow_forward
- I am having trouble with ionic and covalent compounds K2Cr2O7 Pb(OH)2 Br3O8 Pb(ClO3)4arrow_forwardDraw a resonance structure that places a pi bond in a different position. Include all lone pairs in your structure. H. H :0: :O: H aarrow_forwardI am having trouble naming Ionic and covalent compounds Sr(CN)2 Si9C2 Fe(ClO2)3arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning