EBK INTRODUCTION TO HEALTH PHYSICS, FIF
EBK INTRODUCTION TO HEALTH PHYSICS, FIF
5th Edition
ISBN: 9780071835268
Author: Johnson
Publisher: VST
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 6.27P
To determine

To Calculate:The absorbed dose to the liver.

Expert Solution
Check Mark

Answer to Problem 6.27P

The absorbed dose to the liver is 0.7154rad

Explanation of Solution

Given:

Activity of 99mTc -labeled sulfur colloid is 3mci(111MBq)

The deposited percentage of the injectate is 60%

Formula used:

  D=A˜SA˜=1.44A0TeTe=Tp×TbTp+TbD=1.44A0TeS

Where,

  D - Absorbed dose

  A˜ -The cumulated activity

  A0 - Administered activity

  Te - Effective half-life

  Tp - Physical half-life ( t1/2 - half-life)

  Tb - Biological half-life

  S - Absorbed dose per unit cumulated activity

[Values of S for human phantoms can be found in Medical Internal Radiation Dose (MIRD) pamphlets published by the Society of Nuclear Medicine]

In 99mTc decay,

  S(livertoliver)=4.6×105radμciht1/2(Tp)=6h

Calculation:

  A0=3000μci×0.6=1800μci

Absorb dose to the liver [assuming Tb (there is no biological clearance)],

  D=1.44A0TeSD=1.44×1800μci×6h×4.6×105radμcihD=0.7154rad

Conclusion:

The absorbed dose to the liver = 0.7154rad

To determine

To Calculate:The absorbed dose to the spleen.

Expert Solution
Check Mark

Answer to Problem 6.27P

The absorbed dose to the liver is 2.5661rad

Explanation of Solution

Given:

Activity of 99mTc -labeled sulfur colloid is 3mci(111MBq)

The deposited percentage of the inject is 30% .

Formula used:

  D=A˜SA˜=1.44A0TeTe=Tp×TbTp+TbD=1.44A0TeS

Where,

  D - Absorbed dose

  A˜ -The cumulated activity

  A0 - Administered activity

  Te - Effective half-life

  Tp - Physical half-life ( t1/2 - half-life)

  Tb - Biological half-life

  S - Absorbed dose per unit cumulated activity

[Values of S for human phantoms can be found in Medical Internal Radiation Dose (MIRD) pamphlets published by the Society of Nuclear Medicine]

In 99mTc decay,

  S(spleentospleen)=3.3×104radμciht1/2(Tp)=6h

Calculation:

  A0=3000μci×0.3=900μci

Absorb dose to the spleen [assuming Tb (there is no biological clearance)],

  D=1.44A0TeSD=1.44×900μci×6h×3.3×104radμcihD=2.5661rad

Conclusion:

The absorbed dose to the spleen = 2.5661rad

To determine

To Calculate:The absorbed dose to the red marrow.

Expert Solution
Check Mark

Answer to Problem 6.27P

The absorbed dose to the red marrow is 0.0804rad

Explanation of Solution

Given:

Activity of 99mTc -labeled sulfur colloid is 3mci(111MBq)

The deposited percentage of the inject is 10% .

Formula used:

  D=A˜SA˜=1.44A0TeTe=Tp×TbTp+TbD=1.44A0TeS

Where,

  D - Absorbed dose

  A˜ -The cumulated activity

  A0 - Administered activity

  Te - Effective half-life

  Tp - Physical half-life ( t1/2 - half-life)

  Tb - Biological half-life

  S - Absorbed dose per unit cumulated activity

[Values of S for human phantoms can be found in Medical Internal Radiation Dose (MIRD) pamphlets published by the Society of Nuclear Medicine]

In 99mTc decay,

  S(redmarrowtoredmarrow)=3.1×105radμciht1/2(Tp)=6h

Calculation:

  A0=3000μci×0.1=300μci

Absorb dose to the red marrow [assuming Tb (there is no biological clearance)],

  D=1.44A0TeSD=1.44×300μci×6h×3.1×105radμcihD=0.0804rad

Conclusion:

The absorbed dose to the red marrow = 0.0804rad

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Can you help me solve this 2 question and teach me what we use to solve this
You are working during the summer at a company that builds theme parks. The company is designing an electromagnetic propulsion system for a new roller coaster. A model of a substructure of the device appears in the figure below. Two parallel, horizontal rails extend from left to right, with one rail behind the other. A cylindrical rod rests on top of and perpendicular to the rails at their left ends. The distance between the rails is d and the length of the rails is L. The magnetic field vector B points vertically down, perpendicular to the rails. Within the rod, the current I flows out of the page, from the rail in the back toward the rail in the front. The rod is of length d = 1.00 m and mass m = 0.700 kg. The rod carries a current I = 100 A in the direction shown and rolls along the rails of length L = 20.0 m without slipping. The entire system of rod and rails is immersed in a uniform downward-directed magnetic field with magnitude B = 2.30 T. The electromagnetic force on the rod…
Based on the graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage