![Pearson eText for Materials for Civil and Construction Engineers -- Instant Access (Pearson+)](https://www.bartleby.com/isbn_cover_images/9780137505586/9780137505586_largeCoverImage.gif)
Concept explainers
What ingredients are used for the production of portland cement?
![Check Mark](/static/check-mark.png)
What the ingredients that are used for the production of Portland cement.
Explanation of Solution
Portland cement:
It is a cement factory-made from clay and chalk which hardens under water and when hard resembles Portland stone in color.
The two basic raw ingredients are listed as follows:
- Calcareous material
- Argillaceous material
Calcareous material:
The calcareous material is a calcium oxide, such as chalk, oyster shells, or limestone.
Argillaceous material:
It is a mixture of alumina and silica that can be acquired from shale, clay, and blast furnace slag.
Want to see more full solutions like this?
Chapter 6 Solutions
Pearson eText for Materials for Civil and Construction Engineers -- Instant Access (Pearson+)
Additional Engineering Textbook Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Thermodynamics: An Engineering Approach
BASIC BIOMECHANICS
Database Concepts (8th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
- Following is the variation of the field standard penetration number (№60) in a sand deposit: Depth (m) 1.5 N60 5 3 6 4.5 9 6 7 7.5 9 10 11 The groundwater table is located at a depth of 6 m. Given: the dry unit weight of sand from 0 to a depth of 6 m is 18 kN/m³, and the saturated unit weight of sand for depth 6 to 12 m is 20.2 kN/m³. Using the equation N60 0.5 - {11} Dr = determine the average relative density of sand. (Enter your answer to three significant figures.) Average D₁ = %arrow_forwardThe cantilever beam shown below supports a uniform service (unfactored) dead loadof 1.5 kip/ft plus its own self weight, plus two unknown concentrated service(unfactored) live loads, as shown. The concrete has f’c = 6,000 psi and the steel yieldstrength is 60 ksi.a. Determine the design mopment capacity .b. Set-up the factored applied bending moment equation. .c. Calculate maximum safe concentrated live load that the beam may carry.arrow_forwardA rectangular reinforced concrete beam 18 in. wide by 28 in. overall depth is to support a superimposed (additional to the self-weight) service dead load of 0.5 kip/ft and a service live load of 1.3 kip/ft. Reinforcing for positive moment is 60 ksi yield strength. f’c = 5,000 psi. Use 6#9 rebars a. Determine the design moment capacity . b. Set-up the factored applied bending moment . c. Determine the maximum simple span length on which this beam may be safely utilized.arrow_forward
- . . . . . . . . TUGAS-1 For a moist soil sample, the following are given: -Total Volume: V 1.2 m³ -Total mass: M = 2350 kg -Moisture Content: Wc = 8.6% -Spesific Gravity of Soil Solids : Gs = 2.71. Determine the following a. Moist Density (Y) b. Dry Density (yd) C. Void Ratio (e) e. f. g. Porosity (n) Degree of Saturation (Sr) Volume of water in the soil sample (Vw) Draw the three phase of the soil element complete with the number TUGAS-2 Mass (kg) Volum V Mac= V₁ = M = 2350 M₁ = ☐ Air Water Solid A saturated soil has a dry unit weight of 16.18 kN/m³. Its moisture content (WC) is 23%. Determine: a. Saturated unit weight, ysat b. Spesific gravity, Gs C. Void Ratio, e TUGAS-3 The dry density of a sand with a porosity of 0.387 is 1600 kg/m³. Determine the void ratio of the soil and the specific gravity of soil solids. POLIT V= POLITIarrow_forward5. What is the lightest WT shape that would be adequate for tension yielding under a design tensile demand of 1,215 kips? Assume that geometric constraints within the structure require you to select a WT9 section.arrow_forwarda. Determine the effective area for the case shown in the figure below. Suppose that l = 6 in. For L5 × 5 × 5/8: A₁ = 5.90 in.², = 1.47 in. L5 × 5 × 5/8 Weld (Express your answer to three significant figures.) A₁ = in.² b. Determine the effective area for the case shown in the figure below. Suppose that l = 5 in. PL³/8 X 4 Weld (Express your answer to three significant figures.) Ae = in.2 2 c. Determine the effective area for the case shown in the figure below. -5" PL5/8 X 5 Weld (Express your answer to three significant figures.) Ae in.2 d. Determine the effective area for the case shown in the figure below. 2" 2" PL1/2 X 512 ос 3/4-in.-diam. bolts (Express your answer to three significant figures.) Ae = in.² e. Determine the effective area for the case shown in figure below. PL³/8 X 6 7/8-in.-diam. bolts (Express your answer to three significant figures.) Ae= in.2arrow_forward
- A single-angle tension member of A36 steel must resist a dead load of 35 kips and a live load of 84 kips. The length of the member is 18 feet, and it will be connected with a single line of 1- inch-diameter bolts, as shown in the figure below. There will be four or more bolts in this line. For the steel Fy = 36 ksi and F₁ = 58 ksi. Try the tension members given in the table below. Tension member rz (in.) A, (in.²) L6 × 6 × 9.75 1.17 L 5 × 3 × 1/10 4.93 0.746 L5 × 3 × 16 5 2.56 0.758 L5 × 3 × 166 3.31 0.644 Bolt line a. Select a single-angle tension member to resist the loads. Use LRFD. A) L 6 × 6 × B) L 5 × 3 × C) L5 × 3 X D) L 5 × 3 × 6 -Select- V What is the required gross area? (Express your answer to three significant figures.) Ag = in.2 What is the required effective area? (Express your answer to three significant figures.) Ae = in.2 What is the minimum radius of gyration? (Express your answer to three significant figures.) 1min = in. b. Select a single-angle tension member to…arrow_forwardIn the connection shown in the figure below, the bolts are 15/8-inch in diameter, and A36 steel is used for all components: Fy = 36 ksi, Fu = 58 ksi. 21/2" 11½½" 3". -3"- 料 11/2" 11/2" О О t = 3/8 31/2" О О t = 7/16 Consider both the tension member and the gusset plate and compute the following: a. the design block shear strength of the connection (Express your answer to three significant figures.) Rn = kips b. the allowable block shear strength of the connection (Express your answer to three significant figures.) Rn/= kipsarrow_forward13/2/2025 Concrete Technology Q/ 1:1.5:3/0.62 concrete mix by weight, is to be used in cold weather, cement content = 5 Sack/m³ concreting when the temperature is assumed to be (32 °F), Calculate the temperature of the heated mixing water (in ˚C) to meet specification requirements in similar conditions.arrow_forward
- The tension member shown in the figure below must resist a service dead load of 60 kips and a service live load of 45 kips. Does the member have enough strength? The steel is A588: Fy = 50 ksi, Fu = 70 ksi; and the bolts are 11/8 inches in diameter. Assume that Ae = An. О О PL 3/8 X 71/2 a. Use LRFD. Determine the design strength and the factored load. Make a conclusion about the member. (Express your answers to three significant figures.) Φι Ρη = kips kips Pu = -Select- b. Use ASD. Determine the allowable strength and required strength. Make a conclusion about the member. (Express your answers to three significant figures.) Ft Ae = Pa = -Select- kips kipsarrow_forwardDraw neatly top side frontarrow_forwardDetermine the required vertical and horizontal resisting forces and line of actions, as well as the resisting moment at the support of the 12 m wide gate in the diagram. (25 Points) (Answers: 2486 , 1076 , 6414 .x yF kN F kN M kN m= = = )arrow_forward
- Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305086272/9781305086272_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399395/9781337399395_smallCoverImage.gif)