
Draw the influence lines for (a) the moment at C, (b) the vertical reaction at A, and (c) the shear at C. Assume A is a fixed support. Solve this problem using the basic method of Sec. 6.1.

(a)
The influence lines for the moment at
Answer to Problem 6.1P
The influence line for the moment at
Explanation of Solution
Concept Used:
The unit load as
Calculation:
The following figure shows the free body diagram of the beam.
Figure-(1)
Write the equilibrium equation for the moment about point
Here, the net moment about the point
When the point load is at
Substitute,
When the point load is at
Substitute,
Conclusion:
According to the value of
Figure-(2)

(b)
The influence line for the vertical reaction at
Answer to Problem 6.1P
The influence line for the vertical reaction at
Explanation of Solution
Concept Used:
The unit load as
Calculation:
The following figure shows the free body diagram of the beam.
Figure-(3)
Write the equilibrium equation for the forces acting in the vertical direction.
Here, summation of the vertical forces is
Conclusion:
According to the value of the vertical reaction at
Figure-(4)

(c)
The influence line for the shear at
Answer to Problem 6.1P
The influence line for the shear at
Explanation of Solution
Concept Used:
The unit load as
Calculation:
Consider the right segment of the beam as shown in Figure-(5).
Figure-(5)
Write the equilibrium equation for the forces acting in the vertical direction.
Here, summation of the vertical forces is
Now, consider the left segment of the beam as shown in Figure-(6).
Figure-(6)
Write the equilibrium equation for the forces acting in the vertical direction.
Conclusion:
According to the values of
Figure-(7)
Want to see more full solutions like this?
Chapter 6 Solutions
EBK STRUCTURAL ANALYSIS
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Starting Out With Visual Basic (8th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Introduction To Programming Using Visual Basic (11th Edition)
- Introduction: Orifice and Free Flow Jet in Applied Fluid Mechanics' I need to introduction only for answerarrow_forwardcompute the load bearing capacity, displacement, stress distribution, tabulate the answersarrow_forwardcompute the load bearing capacity, displacement, and stress distribution, tabulate the answersarrow_forward
- compute the load bearing capacity, displacement, stress distribution, tabulate the answersarrow_forwardBy using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way slab to sustain a concentrated factored load of P kN applied as shown in figure. Use equilibrium method in solution Column 2.0 P 8.0 m m m XXXXarrow_forwardBy using the yield line theory, determine the ultimate resisting moment (m) for an isotropic reinforced concrete two-way slab shown in figure under a uniform load (q). Use equilibrium method in solution m m column 20 m 20 marrow_forward
- In Tikrit city, environmental engineers are monitoring the diffusion of CO2 in the air as part of a pollution control study. The air-carbon dioxide mixture is at 295 K and 202.6 kPa, and the concentration of CO2 at two planes, 3 mm apart, is 25 vol.% at the first plane and 15 vol.% at the second plane. The diffusivity of CO2 in air under these conditions is 8.2 × 106 m²/s. The study aims to calculate the rate of CO2 transfer across these two planes in two different scenarios: 1. What is the main engineering issue being addressed in this scenario? 2. Calculate the concentration of CO2 at the two planes in mol/m³ and determine the rate of transfer of CO2 using the diffusivity of CO2 in air. 3. With an engineering solution approach to solve the issue, calculate the rate of transfer of CO2 across the two planes assuming two scenarios: equimolecular counter diffusion and diffusion through a stagnant air layer. 4. Determine if there is a significant difference between the results of…arrow_forwardIntroduction: Orifice and Free Flow Jet in Applied Fluid Mechanics' I need to introduction only for answerarrow_forwardThe circular slab of radius 2 m supported by three columns, as shown in figure, is to be isotropically reinforced. Find the ultimate resisting moment per linear meter (m) required just to sustain a uniformly distributed load (q) equals 16 kN/m². Use equilibrium method in solution m Column marrow_forward
- Vehicles begin to arrive at a parking lot at 7:45 A.M. at a constant rate of 4 veh/min and continue to arrive at that rate throughout the day. The parking lot opens at 8:00 A.M. and vehicles are processed at a constant rate of one vehicle every 10 seconds. Assuming D/D/1 queuing, what is the longest queue, the queue at 8:15 A.M., and the average delay per vehicle from 7:45 A.M. until the queue clears?arrow_forward1. Gunakan teor luasi momen untuk menentukan putaran sudut (slope) di B. Gunakan E = 200 GPa dan I-70 x 100 mm². m 8 kN·m B 2. Gunakan teori luas momen dan tentukan putaran sudut (slope) di A dan perpindahan di C. Gunakan E = 200 GPa dan I = 70 x 100 mm². 4 kN 4 kN -2 m 2 m- B 4 m 4 marrow_forwardConsider the conditions in Practice Problem 5.2. How short would the driver reaction times of oncoming vehicles have to be for the probability of an accident to equal 0.20?arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning





